A Fast Approximation Scheme for the Multiple Knapsack Problem

被引:0
|
作者
Jansen, Klaus [1 ]
机构
[1] Univ Kiel, Inst Informat, D-24098 Kiel, Germany
来源
SOFSEM 2012: THEORY AND PRACTICE OF COMPUTER SCIENCE | 2012年 / 7147卷
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper we propose an improved efficient approximation scheme for the multiple knapsack problem (MKP). Given a set A of n items and set B of in bins with possibly different capacities, the goal is to find a subset S subset of A of maximum total profit that can be packed into B without exceeding the capacities of the bins. Chekuri and Khanna presented a PTAS for MKP with arbitrary capacities with running time n(O(1/epsilon 8 log(1/epsilon))). Recently we found an efficient polynomial time approximation scheme (EPTAS) for MKP with running time 2(O(1/epsilon log(1/epsilon))) poly(n). Here we present an improved EPTAS with running time 2(O(1/epsilon log4(1/epsilon))) + poly(n). If the integrality gap between the ILP and LP objective values for bin packing with different sizes is bounded by a constant, the running time can be further improved to 2(O(1/epsilon log2 (1/epsilon))) + poly(n).
引用
收藏
页码:313 / 324
页数:12
相关论文
共 50 条
  • [1] Parameterized Approximation Scheme for the Multiple Knapsack Problem
    Jansen, Klaus
    PROCEEDINGS OF THE TWENTIETH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2009, : 665 - 674
  • [2] PARAMETERIZED APPROXIMATION SCHEME FOR THE MULTIPLE KNAPSACK PROBLEM
    Jansen, Klaus
    SIAM JOURNAL ON COMPUTING, 2009, 39 (04) : 1392 - 1412
  • [3] A polynomial time approximation scheme for the multiple knapsack problem
    Chekuri, C
    Khanna, S
    SIAM JOURNAL ON COMPUTING, 2006, 35 (03) : 713 - 728
  • [4] A fast approximation scheme for the multiple constraints routing problem
    Yang, Weijun
    Chen, Yuanfeng
    Journal of Computational Information Systems, 2015, 11 (21): : 7933 - 7940
  • [5] A successive approximation algorithm for the multiple knapsack problem
    Zhenbo Wang
    Wenxun Xing
    Journal of Combinatorial Optimization, 2009, 17 : 347 - 366
  • [6] A successive approximation algorithm for the multiple knapsack problem
    Wang, Zhenbo
    Xing, Wenxun
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2009, 17 (04) : 347 - 366
  • [7] Positional Knapsack Problem: NP-hardness and approximation scheme
    Pedrosa, Lehilton L. C.
    da Silva, Mauro R. C.
    Schouery, Rafael C. S.
    XII LATIN-AMERICAN ALGORITHMS, GRAPHS AND OPTIMIZATION SYMPOSIUM, LAGOS 2023, 2023, 224 : 400 - 402
  • [8] Approximation Algorithms for the Multiple Knapsack Problem with Assignment Restrictions
    M. Dawande
    J. Kalagnanam
    P. Keskinocak
    F.S. Salman
    R. Ravi
    Journal of Combinatorial Optimization, 2000, 4 : 171 - 186
  • [9] A new fully polynomial time approximation scheme for the knapsack problem
    Kellerer, H
    Pferschy, U
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 1999, 3 (01) : 59 - 71
  • [10] Approximation algorithms for the multiple knapsack problem with assignment restrictions
    Dawande, M
    Kalagnanam, J
    Keskinocak, P
    Salman, FS
    Ravi, R
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2000, 4 (02) : 171 - 186