Essential dimension of inseparable field extensions

被引:1
|
作者
Reichstein, Zinovy [1 ]
Shukla, Abhishek Kumar [1 ]
机构
[1] Univ British Columbia, Dept Math, Vancouver, BC, Canada
关键词
inseparable field extension; essential dimension; group scheme in prime characteristic;
D O I
10.2140/ant.2019.13.513
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let k be a base field, K be a field containing k, and L/K be a field extension of degree n. The essential dimension ed(L/K) over k is a numerical invariant measuring "the complexity" of L/K. Of particular interest is tau(n) = max {ed(L/K) vertical bar L/K is a separable extension of degree n}, also known as the essential dimension of the symmetric group S-n. The exact value of tau(n) is known only for n <= 7. In this paper we assume that k is a field of characteristic p > 0 and study the essential dimension of inseparable extensions L/K. Here the degree n = [L : K] is replaced by a pair (n, e) which accounts for the size of the separable and the purely inseparable parts of L/K, respectively, and tau(n) is replaced by tau(n, e) = max {ed(L/K) vertical bar L/K is a field extension of type (n, e)}. The symmetric group S-n is replaced by a certain group scheme G(n,e) over k. This group scheme is neither finite nor smooth; nevertheless, computing its essential dimension turns out to be easier than computing the essential dimension of S-n. Our main result is a simple formula for tau(n, e).
引用
收藏
页码:513 / 530
页数:18
相关论文
共 50 条
  • [1] Essential dimension of extensions of finite groups by tori
    Reichstein, Zinovy
    Scavia, Federico
    ALGEBRAIC GEOMETRY, 2021, 8 (06): : 749 - 769
  • [2] Essential Dimension
    Reichstein, Zinovy
    PROCEEDINGS OF THE INTERNATIONAL CONGRESS OF MATHEMATICIANS, VOL II: INVITED LECTURES, 2010, : 162 - 188
  • [3] Essential dimension: a survey
    Alexander S. Merkurjev
    Transformation Groups, 2013, 18 : 415 - 481
  • [4] Tori and essential dimension
    Favi, Giordano
    Florence, Mathieu
    JOURNAL OF ALGEBRA, 2008, 319 (09) : 3885 - 3900
  • [5] Essential dimension of quadrics
    Nikita Karpenko
    Alexander Merkurjev
    Inventiones mathematicae, 2003, 153 : 361 - 372
  • [6] Spinors and essential dimension
    Garibaldi, Skip
    Guralnick, Robert M.
    Premet, Alexander
    COMPOSITIO MATHEMATICA, 2017, 153 (03) : 535 - 556
  • [7] A fiber dimension theorem for essential and canonical dimension
    Loetscher, Roland
    COMPOSITIO MATHEMATICA, 2013, 149 (01) : 148 - 174
  • [8] On the essential dimension of cyclic groups
    Wong, Wanshun
    JOURNAL OF ALGEBRA, 2011, 334 (01) : 285 - 294
  • [9] Essential dimension of involutions and subalgebras
    Roland Lötscher
    Israel Journal of Mathematics, 2012, 192 : 325 - 346
  • [10] Groups with essential dimension one
    Chu, Huan
    Hu, Shou-Jen
    Kang, Ming-Chang
    Zhang, Jiping
    ASIAN JOURNAL OF MATHEMATICS, 2008, 12 (02) : 177 - 191