A Reconstruction theorem for genus zero Gromov-Witten invariants of stacks

被引:8
作者
Rose, Michael A. [1 ]
机构
[1] Univ Wisconsin, Dept Math, Madison, WI 53706 USA
关键词
D O I
10.1353/ajm.0.0021
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We generalize the First Reconstruction Theorem of Kontsevich and Martin in two respects. First, we allow the target space to be a Deligne-Mumford stack. Second, under some convergence assumptions, we show it Suffices to check the hypothesis of H-2-generation not on the cohomology ring, but on an any quantum ring in the family given by small quantum cohomology. As an example the latter result is used to compute genus zero Gromov-Witten invariants of P(l, b).
引用
收藏
页码:1427 / 1443
页数:17
相关论文
共 17 条
[1]   Compactifying the space of stable maps [J].
Abramovich, D ;
Vistoli, A .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 15 (01) :27-75
[2]  
ABRAMOVICH D, ARXIVMATHAG0512372
[3]  
ABRAMOVICH D, 2002, CONT MATH, V310, P1
[4]  
ABRAMOVICH D, ARXIVMATHAG0603151
[5]   The intrinsic normal cone [J].
Behrend, K ;
Fantechi, B .
INVENTIONES MATHEMATICAE, 1997, 128 (01) :45-88
[6]   Stacks of stable maps and Gromov-Witten invariants [J].
Behrend, K ;
Manin, Y .
DUKE MATHEMATICAL JOURNAL, 1996, 85 (01) :1-60
[7]   A new cohomology theory of orbifold [J].
Chen, WM ;
Ruan, YB .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2004, 248 (01) :1-31
[8]  
COATES T, ARXIVMATHAG0608481
[9]  
COX DA, 1999, MATH SURVEYS MONOGRA, V68, DOI DOI 10.1090/SURV/068
[10]   TOPOLOGICAL STRINGS IN D-LESS-THAN-1 [J].
DIJKGRAAF, R ;
VERLINDE, H ;
VERLINDE, E .
NUCLEAR PHYSICS B, 1991, 352 (01) :59-86