Bias in the estimation of the mean reversion parameter in continuous time models

被引:33
|
作者
Yu, Jun [1 ,2 ]
机构
[1] Singapore Management Univ, Sch Econ, Sim Keen Boon Inst Financial Econ, Singapore 178903, Singapore
[2] Singapore Management Univ, Lee Kong Chian Sch Business, Singapore 178903, Singapore
关键词
Least squares; Maximum likelihood; Discrete sampling; Continuous record; Near unit root; MAXIMUM-LIKELIHOOD-ESTIMATION; TERM STRUCTURE; NONLINEAR DIFFUSIONS; 2ND-ORDER BIAS; SQUARED ERROR; SERIES MODELS; UNIT-ROOT; MOMENTS; PRICES; VOLATILITY;
D O I
10.1016/j.jeconom.2012.01.004
中图分类号
F [经济];
学科分类号
02 ;
摘要
It is well known that for continuous time models with a linear drift standard estimation methods yield biased estimators for the mean reversion parameter both in finite discrete samples and in large in-fill samples. In this paper, we obtain two expressions to approximate the bias of the least squares/maximum likelihood estimator of the mean reversion parameter in the Ornstein-Uhlenbeck process with a known long run mean when discretely sampled data are available. The first expression mimics the bias formula of Marriott and Pope (1954) for the discrete time model. Simulations show that this expression does not work satisfactorily when the speed of mean reversion is slow. Slow mean reversion corresponds to the near unit root situation and is empirically realistic for financial time series. An improvement is made in the second expression where a nonlinear correction term is included into the bias formula. It is shown that the nonlinear term is important in the near unit root situation. Simulations indicate that the second expression captures the magnitude, the curvature and the non-monotonicity of the actual bias better than the first expression. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:114 / 122
页数:9
相关论文
共 50 条