AN IMPROVED RESULT ON GROUND STATE SOLUTIONS OF QUASILINEAR SCHRODINGER EQUATIONS WITH SUPER-LINEAR NONLINEARITIES

被引:2
作者
Chen, Sitong [1 ]
Gao, Zu [1 ]
机构
[1] Cent S Univ, Sch Math & Stat, Changsha 410083, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
quasilinear Schrodinger equation; ground state solution; Pohozaev identity; NEHARI-POHOZAEV TYPE; EXISTENCE;
D O I
10.1017/S0004972718001235
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
By using variational and some new analytic techniques, we prove the existence of ground state solutions for the quasilinear Schrodinger equation with variable potentials and super-linear nonlinearities. Moreover, we establish a minimax characterisation of the ground state energy. Our result improves and extends the existing results in the literature.
引用
收藏
页码:231 / 241
页数:11
相关论文
共 19 条
[1]   Electron self-trapping in a discrete two-dimensional lattice [J].
Brizhik, L ;
Eremko, A ;
Piette, B ;
Zakrzewski, W .
PHYSICA D, 2001, 159 (1-2) :71-90
[2]  
Chen J., 2018, ELECT J DIFFERENTIAL, V2018
[3]  
Chen S. T., 2018, ELECT J DIFFERENTIAL, V2018
[4]   Ground state solutions for generalized quasilinear Schrodinger equations with variable potentials and Berestycki-Lions nonlinearities [J].
Chen, Sitong ;
Tang, Xianhua .
JOURNAL OF MATHEMATICAL PHYSICS, 2018, 59 (08)
[5]   IMPROVED RESULTS FOR KLEIN-GORDON-MAXWELL SYSTEMS WITH GENERAL NONLINEARITY [J].
Chen, Sitong ;
Tang, Xianhua .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2018, 38 (05) :2333-2348
[6]   Solutions for a quasilinear Schrodinger equation: a dual approach [J].
Colin, M ;
Jeanjean, L .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2004, 56 (02) :213-226
[7]   Electrons on hexagonal lattices and applications to nanotubes [J].
Hartmann, B ;
Zakrzewski, WJ .
PHYSICAL REVIEW B, 2003, 68 (18)
[8]   On the existence of bounded Palais-Smale sequences and application to a Landesman-Lazer-type problem set on RN [J].
Jeanjean, L .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1999, 129 :787-809
[9]   Solutions for quasilinear Schrodinger equations via the Nehari method [J].
Liu, JQ ;
Wang, YQ ;
Wang, ZQ .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2004, 29 (5-6) :879-901
[10]   Soliton solutions for quasilinear Schrodinger equations, II [J].
Liu, JQ ;
Wang, YQ ;
Wang, ZQ .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2003, 187 (02) :473-493