Synergetic Effect of Na-Ca for Enhanced Photocatalytic Performance in NOXDegradation by g-C3N4

被引:16
|
作者
Lu, Zhen-Zhen [1 ]
Li, Si-Qi [1 ]
Xiao, Ji-Yue [1 ]
机构
[1] Chongqing Jiaotong Univ, Sch Civil Engn, Chongqing 400074, Peoples R China
基金
中国博士后科学基金;
关键词
One-pot polymerization; Graphitic carbon nitride; NO(X)degradation; Synergetic effect of Na-Ca; GRAPHITIC CARBON NITRIDE; HYDROGEN EVOLUTION; DOPED G-C3N4; NOX ABATEMENT; BAND GAP; PURIFICATION; ADSORPTION; OXIDE; COADSORPTION; REACTIVITY;
D O I
10.1007/s10562-020-03318-5
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Na-Ca co-doping modified g-C3N4 were prepared through the one pot thermal polymerization under a mixture consisting of melamine and sodium chloride-calcium chloride bi-component metal salt in different proportions. The photocatalytic NOX degradation performance of prepared samples were assessed by NOX toxicity. The results showed that the lowest NOX toxicity of co-doping modified g-C3N4 is 3.49 and 1.77 times than that of Na and Ca single-doping modified g-C3N4 when the weight ratio of melamine to metal salt was 1:0.3. X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscope (SEM), N-2 adsorption-desorption were used to characterize the crystalline structures and morphologies of products. Infrared spectrum analyzer (FT-IR), X-ray photoelectron spectroscopy (XPS) were used to study the effects of Na-Ca on the chemical composition of products. And the optical performance of products was characterized by ultraviolet-visible spectra (UV-Vis) and optical luminescence (PL). The results showed that Na-Ca co-doping had a synergic effect on NOX degradation. The larger surface area is equivalent to the increase of photocatalyst dosage. Sodium doping increases NO degradation efficiency by promoting redox capacity and the separation of electron-hole pairs, calcium doping can enhance the chemisorption of NO2 because of the generation of CaCO3 and thus reduce the emission of NO2. [GRAPHICS]
引用
收藏
页码:370 / 381
页数:12
相关论文
共 50 条
  • [31] Enhanced photocatalytic ozonation of organics by g-C3N4 under visible light irradiation
    Liao, Gaozu
    Zhu, Dongyun
    Li, Laisheng
    Lan, Bingyan
    JOURNAL OF HAZARDOUS MATERIALS, 2014, 280 : 531 - 535
  • [32] Photocatalytic Activity Enhanced via g-C3N4 Nanoplates to Nanorods
    Bai, Xiaojuan
    Wang, Li
    Zong, Ruilong
    Zhu, Yongfa
    JOURNAL OF PHYSICAL CHEMISTRY C, 2013, 117 (19) : 9952 - 9961
  • [33] Effect of acid on the photocatalytic degradation of rhodamine B over g-C3N4
    Fang, Shun
    Lv, Kangle
    Li, Qin
    Ye, Hengpeng
    Du, Dongyun
    Li, Mei
    APPLIED SURFACE SCIENCE, 2015, 358 : 336 - 342
  • [34] Heterojunction Engineering of g-C3N4 with CuO for Enhanced Photocatalytic and Photoelectrochemical Performance
    Joseph, Merin
    Haridas, Suja
    Remello, Sebastian Nybin
    ENERGY TECHNOLOGY, 2024, 12 (04)
  • [35] Enhanced photocatalytic performance of BaTiO3/g-C3N4 heterojunction for the degradation of organic pollutants
    Kappadan, Shabina
    Thomas, Sabu
    Kalarikkal, Nandakumar
    CHEMICAL PHYSICS LETTERS, 2021, 771
  • [36] Effective hydrogenation of g-C3N4 for enhanced photocatalytic performance revealed by molecular structure dynamics
    Gong, Yan
    Li, Hongkun
    Jiao, Chen
    Xu, Qingchi
    Xu, Xiangyu
    Zhang, Xiuming
    Liu, Yufei
    Dai, Ziyang
    Liu, Xiang Yang
    Chen, Wei
    Liu, Lei
    Zhan, Da
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2019, 250 : 63 - 70
  • [37] Preparation and enhanced photocatalytic performance of g-C3N4/TiO2-SiO2
    Chang, W.
    Qin, J.
    Zheng, D. D.
    Gao, B.
    Li, Y. F.
    Fujino, T.
    OPTOELECTRONICS AND ADVANCED MATERIALS-RAPID COMMUNICATIONS, 2021, 15 (3-4): : 180 - 186
  • [38] Boron doped g-C3N4 with enhanced photocatalytic UO22+ reduction performance
    Lu, Changhai
    Chen, Rongyue
    Wu, Xi
    Fan, Meifeng
    Liu, Yunhai
    Le, Zhanggao
    Jiang, Shujuan
    Song, Shaoqing
    APPLIED SURFACE SCIENCE, 2016, 360 : 1016 - 1022
  • [39] Construction of exfoliated g-C3N4 nanosheets-BiOCl hybrids with enhanced photocatalytic performance
    Chang, Fei
    Xie, Yunchao
    Zhang, Jian
    Chen, Juan
    Li, Chenlu
    Wang, Jie
    Luo, Jieru
    Deng, Baoqing
    Hu, Xuefeng
    RSC ADVANCES, 2014, 4 (54) : 28519 - 28528
  • [40] Ti3C2 MXene modified g-C3N4 with enhanced visible-light photocatalytic performance for NO purification
    Li, Junlian
    Zhang, Qian
    Zou, Yanzhao
    Cao, Yuehan
    Cui, Wen
    Dong, Fan
    Zhou, Ying
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2020, 575 (575) : 443 - 451