A Complete Classification of Which (n, k)-Star Graphs are Cayley Graphs

被引:2
|
作者
Sweet, Karimah [1 ]
Li, Li [1 ]
Cheng, Eddie [1 ]
Liptak, Laszlo [1 ]
Steffy, Daniel E. [1 ]
机构
[1] Oakland Univ, Dept Math & Stat, Rochester, MI 48309 USA
关键词
Interconnection networks; Cayley graphs; (n; k)-star graphs; Sabidussi's Theorem; k-homogeneous groups; k-transitive groups; COMMUTATOR SUBGROUP; DIAGNOSABILITY; CONNECTIVITY;
D O I
10.1007/s00373-017-1871-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The (n, k)-star graphs are an important class of interconnection networks that generalize star graphs, which are superior to hypercubes. In this paper, we continue the work begun by Cheng et al. (Graphs Combin 33(1):85-102, 2017) and complete the classification of all the (n, k)-star graphs that are Cayley.
引用
收藏
页码:241 / 260
页数:20
相关论文
共 50 条
  • [1] A Complete Classification of Which (n, k)-Star Graphs are Cayley Graphs
    Karimah Sweet
    Li Li
    Eddie Cheng
    László Lipták
    Daniel E. Steffy
    Graphs and Combinatorics, 2018, 34 : 241 - 260
  • [2] On the Problem of Determining which (n, k)-Star Graphs are Cayley Graphs
    Cheng, Eddie
    Li, Li
    Liptak, Laszlo
    Shim, Sangho
    Steffy, Daniel E.
    GRAPHS AND COMBINATORICS, 2017, 33 (01) : 85 - 102
  • [3] On the Problem of Determining which (n, k)-Star Graphs are Cayley Graphs
    Eddie Cheng
    Li Li
    László Lipták
    Sangho Shim
    Daniel E. Steffy
    Graphs and Combinatorics, 2017, 33 : 85 - 102
  • [4] Cubic (m,n)-metacirculant graphs which are not Cayley graphs
    Tan, ND
    DISCRETE MATHEMATICS, 1996, 154 (1-3) : 237 - 244
  • [5] Which Haar graphs are Cayley graphs?
    Estelyi, Istvan
    Pisanski, Tomaz
    ELECTRONIC JOURNAL OF COMBINATORICS, 2016, 23 (03):
  • [6] Vertex-transitive generalized Cayley graphs which are not Cayley graphs
    Hujdurovic, Ademir
    Kutnar, Klavdija
    Marusic, Dragan
    EUROPEAN JOURNAL OF COMBINATORICS, 2015, 46 : 45 - 50
  • [7] Which Cayley graphs are integral?
    Abdollahi, A.
    Vatandoost, E.
    ELECTRONIC JOURNAL OF COMBINATORICS, 2009, 16 (01):
  • [8] Fullerenes Which are Cayley Graphs
    Meng, Jixiang
    Huang, Qiongxiang
    Zhang, Zhao
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2006, 56 (03) : 493 - 500
  • [9] Complete rotations in Cayley graphs
    Heydemann, MC
    Marlin, N
    Pérennes, S
    EUROPEAN JOURNAL OF COMBINATORICS, 2001, 22 (02) : 179 - 196
  • [10] WHICH GENERALIZED PETERSEN GRAPHS ARE CAYLEY-GRAPHS
    NEDELA, R
    SKOVIERA, M
    JOURNAL OF GRAPH THEORY, 1995, 19 (01) : 1 - 11