Electromagnetic Force in the Complex Quaternion Space

被引:0
|
作者
Weng, Zi-Hua [1 ]
机构
[1] Xiamen Univ, Sch Phys & Mech & Elect Engn, Xiamen 361005, Peoples R China
基金
中国国家自然科学基金;
关键词
EQUATIONS;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
J. C. Maxwell applied simultaneously the vector terminology and the quaternion analysis to study the electromagnetic features. Nowadays the spaces of electromagnetic and gravitational fields can be chosen as the quaternion spaces, and the coordinates of quaternion spaces are able to be the complex numbers. The quaternion space of the electromagnetic field is independent to that of the gravitational field. These two quaternion spaces can combine together to become one octonion space. Contrarily the octonion space can be separated into two subspaces, the quaternion space and the S-quaternion space. In the quaternion space, it is able to deduce the field strength, field source, angular momentum, torque, force, and mass continuity equation etc. in the gravitational field. In the S-quaternion space, it is able to infer the field strength, field source, and current continuity equation etc. in the electromagnetic field. The results reveal that the quaternion space is suitable to depict the gravitational features, including the gravity and the mass continuity equation etc.. Meanwhile the S-quaternion space, it is suitable to describe the electromagnetic features, including the electromagnetic force and the current continuity equation etc..
引用
收藏
页码:1111 / 1115
页数:5
相关论文
共 50 条
  • [11] SOME PROPERTIES OF COMPLEX QUATERNION AND COMPLEX SPLIT QUATERNION MATRICES
    Alagoz, Y.
    Ozyurt, G.
    MISKOLC MATHEMATICAL NOTES, 2019, 20 (01) : 45 - 58
  • [12] A New Quaternion Hyper-Complex Space with Hyper Argument and Basic Functions via Quaternion Dynamic Equations
    Chao Wang
    Zhien Li
    Ravi P. Agarwal
    The Journal of Geometric Analysis, 2022, 32
  • [13] A New Quaternion Hyper-Complex Space with Hyper Argument and Basic Functions via Quaternion Dynamic Equations
    Wang, Chao
    Li, Zhien
    Agarwal, Ravi P.
    JOURNAL OF GEOMETRIC ANALYSIS, 2022, 32 (02)
  • [14] On the quaternion projective space
    Omar, Y.
    Shahin, A. M.
    Ahmed, E.
    Tarabia, A. M. K.
    El-Saka, H. A. A.
    JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE, 2020, 14 (01): : 1538 - 1543
  • [15] Metadevice for Electromagnetic Cloaking With Monitors in Complex Space
    Shao, Junjie
    Sang, Yuehai
    Wang, Ren
    Xie, Jun
    Xu, Xiaolong
    Lang, Junjie
    Zhou, Ziwei
    Wang, Bing-Zhong
    INTERNATIONAL JOURNAL OF RF AND MICROWAVE COMPUTER-AIDED ENGINEERING, 2024, 2024
  • [16] Geometrical approach to quaternion transformations and integrating in quaternion space
    Meister, L
    Schaeben, H
    ICNAAM 2004: INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2004, 2004, : 506 - 508
  • [17] Quaternion form of the electromagnetic reciprocity theorem
    Liu, Guoqiang
    Li, Yuanyuan
    Liu, Jing
    PHYSICA SCRIPTA, 2024, 99 (06)
  • [18] Supersymmetry breaking in quaternion space
    Rawat, S.
    Rawat, A. S.
    Dabas, S.
    Koranga, B. S.
    INDIAN JOURNAL OF PHYSICS, 2024, 98 (05) : 1857 - 1863
  • [19] Supersymmetry breaking in quaternion space
    S. Rawat
    A. S. Rawat
    S. Dabas
    B. S. Koranga
    Indian Journal of Physics, 2024, 98 : 1857 - 1863
  • [20] Quaternion homology of Banach space
    Yasien, Gh.G.
    Advances in modelling and analysis. A, general mathematical and computer tools, 1998, 33 (02): : 1 - 8