Automated drusen segmentation and quantification in SD-OCT images

被引:106
作者
Chen, Qiang [1 ,2 ]
Leng, Theodore [3 ]
Zheng, Luoluo [3 ]
Kutzscher, Lauren [3 ]
Ma, Jeffrey [3 ]
de Sisternes, Luis [1 ]
Rubin, Daniel L. [1 ,4 ]
机构
[1] Stanford Univ, Dept Radiol, Stanford, CA 94305 USA
[2] Nanjing Univ Sci & Technol, Sch Comp Sci & Engn, Nanjing 210094, Jiangsu, Peoples R China
[3] Stanford Univ, Sch Med, Byers Eye Inst Stanford, Palo Alto, CA 94303 USA
[4] Stanford Univ, Dept Med Biomed Informat, Stanford, CA 94305 USA
基金
美国国家卫生研究院;
关键词
Drusen segmentation; SD-OCT; Projection image; Retinal pigment epithelium; AMD; OPTICAL COHERENCE TOMOGRAPHY; AGE-RELATED MACULOPATHY; MACULAR DEGENERATION; VISUALIZATION; ALGORITHM; PATHOLOGY; FILTER;
D O I
10.1016/j.media.2013.06.003
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Spectral domain optical coherence tomography (SD-OCT) is a useful tool for the visualization of drusen, a retinal abnormality seen in patients with age-related macular degeneration (AMD); however, objective assessment of drusen is thwarted by the lack of a method to robustly quantify these lesions on serial OCT images. Here, we describe an automatic drusen segmentation method for SD-OCT retinal images, which leverages a priori knowledge of normal retinal morphology and anatomical features. The highly reflective and locally connected pixels located below the retinal nerve fiber layer (RNFL) are used to generate a segmentation of the retinal pigment epithelium (RPE) layer. The observed and expected contours of the RPE layer are obtained by interpolating and fitting the shape of the segmented RPE layer, respectively. The areas located between the interpolated and fitted RPE shapes (which have nonzero area when drusen occurs) are marked as drusen. To enhance drusen quantification, we also developed a novel method of retinal projection to generate an en face retinal image based on the RPE extraction, which improves the quality of drusen visualization over the current approach to producing retinal projections from SD-OCT images based on a summed-voxel projection (SVP), and it provides a means of obtaining quantitative features of drusen in the en face projection. Visualization of the segmented drusen is refined through several post-processing steps, drusen detection to eliminate false positive detections on consecutive slices, drusen refinement on a projection view of drusen, and drusen smoothing. Experimental evaluation results demonstrate that our method is effective for drusen segmentation. In a preliminary analysis of the potential clinical utility of our methods, quantitative drusen measurements, such as area and volume, can be correlated with the drusen progression in non-exudative AMD, suggesting that our approach may produce useful quantitative imaging biomarkers to follow this disease and predict patient outcome. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:1058 / 1072
页数:15
相关论文
共 42 条
[1]   Drusen in age-related macular degeneration: Pathogenesis, natural course, and laser photocoagulation-induced regression [J].
Abdelsalam, A ;
Del Priore, L ;
Zarbin, MA .
SURVEY OF OPHTHALMOLOGY, 1999, 44 (01) :1-29
[2]  
[Anonymous], 3 INT S BIOM ENG ISB
[3]   A new approach of geodesic reconstruction for drusen segmentation in eye fundus images [J].
Ben Sbeh, Z ;
Cohen, LD ;
Mimoun, G ;
Coscas, G .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2001, 20 (12) :1321-1333
[4]  
BenSbeh Z, 1997, INTERNATIONAL CONFERENCE ON IMAGE PROCESSING - PROCEEDINGS, VOL I, P255, DOI 10.1109/ICIP.1997.647753
[5]  
BOWER BA, 2007, P SPIE, V6426
[6]  
Brandon L, 2003, LECT NOTES COMPUT SC, V2878, P618
[7]   A non-local algorithm for image denoising [J].
Buades, A ;
Coll, B ;
Morel, JM .
2005 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOL 2, PROCEEDINGS, 2005, :60-65
[8]  
Checco P, 2006, IEEE INT SYMP CIRC S, P2181
[9]  
Davis MD, 2005, ARCH OPHTHALMOL-CHIC, V123, P1484
[10]   Enhanced visualization of macular pathology with the use of ultrahigh-resolution optical coherence tomography [J].
Drexler, W ;
Sattmarin, H ;
Hermann, B ;
Ko, TH ;
Stur, M ;
Unterhuber, A ;
Scholda, C ;
Findl, O ;
Wirtitsch, M ;
Fujimoto, JG ;
Fercher, AF .
ARCHIVES OF OPHTHALMOLOGY, 2003, 121 (05) :695-706