A Mittag-Leffler-type function of two variables

被引:52
|
作者
Garg, Mridula [1 ]
Manohar, Pratibha [1 ]
Kalla, S. L. [2 ]
机构
[1] Univ Rajasthan, Dept Math, Jaipur 302004, Rajasthan, India
[2] Vyas Inst Higher Educ, Dept Comp Engn, Jodhpur, Rajasthan, India
关键词
Horn's function; Laplace transform; Mittag-Leffler function; Riemann-Liouville fractional integral and derivative; Fox H-function; 26A33; 33E12; 47B38; 47G10;
D O I
10.1080/10652469.2013.789872
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we introduce and study a Mittag-Leffler-type function of two variables E-1 (x, y) and a generalization of Mittag-Leffler-type function of one variable E-alpha 2,delta 1;alpha 3,delta 2(gamma 1,alpha 1) (x) as limiting case of E-1 (x, y), which includes several Mittag-Leffler-type functions of one variable as its special cases. Here, we first obtain the domain of convergence of E-1 (x, y), considering all possible cases. Next, we give two differential equations for E-1 (x, y) and one differential equation for E-alpha 2,delta 1;alpha 3,delta 2(gamma 1,alpha 1) (x) for some particular values of the parameters. We further obtain two integral representations and Mellin-Barnes contour integral representation of E-1 (x, y). We also obtain the Laplace transform of one and two dimensions of E-1 (x, y) and its fractional integral and derivative. Next, we define an integral operator with E-1 (x, y) as a kernel and show that it is bounded on the Lebesgue measurable space L(a, b). Finally, we introduce one more Mittag-Leffler-type function of two variables.
引用
收藏
页码:934 / 944
页数:11
相关论文
共 50 条
  • [31] A Comprehensive Study on the Zeros of the Two-Parameter Mittag-Leffler Function
    Abooali, Farnoosh
    Akbarfam, Aliasghar Jodayree
    SAHAND COMMUNICATIONS IN MATHEMATICAL ANALYSIS, 2025, 22 (01): : 1 - 23
  • [32] Fast evaluation of the Mittag-Leffler function on the imaginary axis
    Popolizio, Marina
    Garrappa, Roberto
    2014 INTERNATIONAL CONFERENCE ON FRACTIONAL DIFFERENTIATION AND ITS APPLICATIONS (ICFDA), 2014,
  • [33] A further extension of Mittag-Leffler function
    Maja Andrić
    Ghulam Farid
    Josip Pečarić
    Fractional Calculus and Applied Analysis, 2018, 21 : 1377 - 1395
  • [34] A note on property of the Mittag-Leffler function
    Peng, Jigen
    Li, Kexue
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 370 (02) : 635 - 638
  • [35] Asymptotics for a variant of the Mittag-Leffler function
    Gerhold, Stefan
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2012, 23 (06) : 397 - 403
  • [36] Integral Representation of the Mittag-Leffler Function
    Saenko, V. V.
    RUSSIAN MATHEMATICS, 2022, 66 (04) : 43 - 58
  • [37] Battery Modeling with Mittag-Leffler Function
    Abdelhafiz, Shahenda M.
    Fouda, Mohammed E.
    Radwan, Ahmed G.
    2024 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, ISCAS 2024, 2024,
  • [38] On the Numerical Computation of the Mittag-Leffler Function
    Ortigueira, Manuel D.
    Lopes, Antonio M.
    Machado, Jose Tenreiro
    INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2019, 20 (06) : 725 - 736
  • [39] On Mittag-Leffler type Poisson distribution
    Porwal S.
    Dixit K.K.
    Afrika Matematika, 2017, 28 (1-2) : 29 - 34
  • [40] PARTIAL SUMS OF MITTAG-LEFFLER FUNCTION
    Bansal, Deepak
    Orhan, Halit
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2018, 12 (02): : 423 - 431