A Mittag-Leffler-type function of two variables

被引:52
|
作者
Garg, Mridula [1 ]
Manohar, Pratibha [1 ]
Kalla, S. L. [2 ]
机构
[1] Univ Rajasthan, Dept Math, Jaipur 302004, Rajasthan, India
[2] Vyas Inst Higher Educ, Dept Comp Engn, Jodhpur, Rajasthan, India
关键词
Horn's function; Laplace transform; Mittag-Leffler function; Riemann-Liouville fractional integral and derivative; Fox H-function; 26A33; 33E12; 47B38; 47G10;
D O I
10.1080/10652469.2013.789872
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we introduce and study a Mittag-Leffler-type function of two variables E-1 (x, y) and a generalization of Mittag-Leffler-type function of one variable E-alpha 2,delta 1;alpha 3,delta 2(gamma 1,alpha 1) (x) as limiting case of E-1 (x, y), which includes several Mittag-Leffler-type functions of one variable as its special cases. Here, we first obtain the domain of convergence of E-1 (x, y), considering all possible cases. Next, we give two differential equations for E-1 (x, y) and one differential equation for E-alpha 2,delta 1;alpha 3,delta 2(gamma 1,alpha 1) (x) for some particular values of the parameters. We further obtain two integral representations and Mellin-Barnes contour integral representation of E-1 (x, y). We also obtain the Laplace transform of one and two dimensions of E-1 (x, y) and its fractional integral and derivative. Next, we define an integral operator with E-1 (x, y) as a kernel and show that it is bounded on the Lebesgue measurable space L(a, b). Finally, we introduce one more Mittag-Leffler-type function of two variables.
引用
收藏
页码:934 / 944
页数:11
相关论文
共 50 条
  • [21] On the numerical computation of the Mittag-Leffler function
    Valerio, Duarte
    Machado, Jose Tenreiro
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2014, 19 (10) : 3419 - 3424
  • [22] Extension of prefunctions and its relation with Mittag-Leffler function
    A. P. Hiwarekar
    The Journal of Analysis, 2020, 28 : 169 - 177
  • [23] A FURTHER EXTENSION OF MITTAG-LEFFLER FUNCTION
    Andric, Maja
    Farid, Ghulam
    Pecaric, Josip
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2018, 21 (05) : 1377 - 1395
  • [24] A monotonicity property of the Mittag-Leffler function
    Alzer, Horst
    Kwong, Man Kam
    ACTA SCIENTIARUM MATHEMATICARUM, 2019, 85 (1-2): : 181 - 187
  • [25] A NEW EXTENSION OF THE MITTAG-LEFFLER FUNCTION
    Arshad, Muhammad
    Choi, Junesang
    Mubeen, Shahid
    Nisar, Kottakkaran Sooppy
    Rahman, Gauhar
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2018, 33 (02): : 549 - 560
  • [26] Integral Representation of the Mittag-Leffler Function
    V. V. Saenko
    Russian Mathematics, 2022, 66 : 43 - 58
  • [27] Exponential asymptotics of the Mittag-Leffler function
    Wong, R
    Zhao, YQ
    CONSTRUCTIVE APPROXIMATION, 2002, 18 (03) : 355 - 385
  • [28] Exponential asymptotics of the Mittag-Leffler function
    Paris, RB
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2002, 458 (2028): : 3041 - 3052
  • [29] Fractional Integrations of a Generalized Mittag-Leffler Type Function and Its Application
    Nisar, Kottakkaran Sooppy
    MATHEMATICS, 2019, 7 (12)
  • [30] Extension of prefunctions and its relation with Mittag-Leffler function
    Hiwarekar, A. P.
    JOURNAL OF ANALYSIS, 2020, 28 (01) : 169 - 177