Upper-tail large deviation principle for the ASEP

被引:3
作者
Das, Sayan [1 ]
Zhu, Weitao [1 ]
机构
[1] Columbia Univ, Dept Math, 2990 Broadway, New York, NY 10027 USA
关键词
ASEP; Lyapunov exponents; large deviations; Fredholm determinants; STOCHASTIC HEAT-EQUATION; INTERMITTENCY; FLUCTUATIONS; MOMENTS; DISTRIBUTIONS; DETERMINANTS; ENERGY; MODEL;
D O I
10.1214/21-EJP730
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider the asymmetric simple exclusion process (ASEP) on Z started from step initial data and obtain the exact Lyapunov exponents for H-0(t), the integrated current of ASEP. As a corollary, we derive an explicit formula for the upper-tail large deviation rate function for -H-0(t). Our result matches with the rate function for the integrated current of the totally asymmetric simple exclusion process (TASEP) obtained in [40].
引用
收藏
页数:34
相关论文
共 72 条
[1]   Convergence of the Stochastic Six-Vertex Model to the ASEP [J].
Aggarwal, Amol .
MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 2017, 20 (02)
[2]   Probability Distribution of the Free Energy of the Continuum Directed Random Polymer in 1+1 Dimensions [J].
Amir, Gideon ;
Corwin, Ivan ;
Quastel, Jeremy .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2011, 64 (04) :466-537
[3]  
Andrews G.E., 1999, Special Functions, DOI DOI 10.1017/CBO9781107325937
[4]  
[Anonymous], 2013, Stochastic interacting systems: contact, voter and exclusion processes
[5]   INTERMITTENCY FOR THE WAVE AND HEAT EQUATIONS WITH FRACTIONAL NOISE IN TIME [J].
Balan, Raluca M. ;
Conus, Daniel .
ANNALS OF PROBABILITY, 2016, 44 (02) :1488-1534
[6]  
Basu R, 2017, Arxiv, DOI arXiv:1712.01255
[7]   Delocalization of Polymers in Lower Tail Large Deviation [J].
Basu, Riddhipratim ;
Ganguly, Shirshendu ;
Sly, Allan .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2019, 370 (03) :781-806
[8]   THE STOCHASTIC HEAT-EQUATION - FEYNMAN-KAC FORMULA AND INTERMITTENCE [J].
BERTINI, L ;
CANCRINI, N .
JOURNAL OF STATISTICAL PHYSICS, 1995, 78 (5-6) :1377-1401
[9]  
Bodineau T., 2005, Current large deviations for asymmetric exclusion processes with open boundaries
[10]  
Bornemann F, 2010, MATH COMPUT, V79, P871, DOI 10.1090/S0025-5718-09-02280-7