Lattice-Boltzmann simulations of fluid flows in MEMS

被引:353
|
作者
Nie, XB
Doolen, GD
Chen, SY [1 ]
机构
[1] Johns Hopkins Univ, Dept Mech Engn, Baltimore, MD 21218 USA
[2] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA
[3] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA
[4] Peking Univ, Natl Key Lab Turbulence Res, Beijing, Peoples R China
关键词
Lattice-Boltzmann; microfluid; velocity slip;
D O I
10.1023/A:1014523007427
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The lattice Boltzmann model is a simplified kinetic method based on the particle distribution function. We use this method to simulate problems in MEMS, in which the velocity slip near the wall plays an important role. It is demonstrated that the lattice Boltzmann method can capture the fundamental behaviors in micro-channel flow, including velocity slip, nonlinear pressure drop along the channel and mass flow rate variation with Knudsen number, The Knudsen number dependence of the position of the vortex center and the pressure contour in micro-cavity flows is also demonstrated.
引用
收藏
页码:279 / 289
页数:11
相关论文
共 50 条
  • [41] Weighted Decomposition in High-Performance Lattice-Boltzmann Simulations: Are Some Lattice Sites More Equal than Others?
    Groen, Derek
    Abou Chacra, David
    Nash, Rupert W.
    Jaros, Jiri
    Bernabeu, Miguel O.
    Coveney, Peter V.
    SOLVING SOFTWARE CHALLENGES FOR EXASCALE, 2015, 8759 : 28 - 38
  • [42] Lattice-Boltzmann scheme for natural convection in porous media
    VanderSman, RGM
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 1997, 8 (04): : 879 - 888
  • [43] A new partial-bounceback lattice-Boltzmann method for fluid flow through heterogeneous media
    Walsh, Stuart D. C.
    Burwinkle, Holly
    Saar, Martin O.
    COMPUTERS & GEOSCIENCES, 2009, 35 (06) : 1186 - 1193
  • [44] Comparison between finite volume and lattice-Boltzmann method simulations of gas-fluidised beds: bed expansion and particle–fluid interaction force
    J. R. Third
    Y. Chen
    C. R. Müller
    Computational Particle Mechanics, 2016, 3 : 373 - 381
  • [45] A Consistent Grid Coupling Method for Lattice-Boltzmann Schemes
    Martin Rheinländer
    Journal of Statistical Physics, 2005, 121 : 49 - 74
  • [46] Lattice-Boltzmann simulation of particle suspensions in shear flow
    Hyväluoma, J
    Raiskinmäki, P
    Koponen, A
    Kataja, M
    Timonen, J
    JOURNAL OF STATISTICAL PHYSICS, 2005, 121 (1-2) : 149 - 161
  • [47] Lattice-Boltzmann method for macroscopic porous media modeling
    Freed, DM
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 1998, 9 (08): : 1491 - 1503
  • [48] Interpolation methods and the accuracy of lattice-Boltzmann mesh refinement
    Guzik, Stephen M.
    Weisgraber, Todd H.
    Colella, Phillip
    Alder, Berni J.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 259 : 461 - 487
  • [49] Numerical simulation of bubble dynamics: Lattice-Boltzmann approach
    Yang, ZL
    Do, QM
    Palm, B
    Sehgal, BR
    HEAT TRANSFER SCIENCE AND TECHNOLOGY 2000, 2000, : 598 - 603
  • [50] LUDWIG: A parallel Lattice-Boltzmann code for complex fluids
    Desplat, JC
    Pagonabarraga, I
    Bladon, P
    COMPUTER PHYSICS COMMUNICATIONS, 2001, 134 (03) : 273 - 290