Lattice-Boltzmann simulations of fluid flows in MEMS

被引:353
|
作者
Nie, XB
Doolen, GD
Chen, SY [1 ]
机构
[1] Johns Hopkins Univ, Dept Mech Engn, Baltimore, MD 21218 USA
[2] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA
[3] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA
[4] Peking Univ, Natl Key Lab Turbulence Res, Beijing, Peoples R China
关键词
Lattice-Boltzmann; microfluid; velocity slip;
D O I
10.1023/A:1014523007427
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The lattice Boltzmann model is a simplified kinetic method based on the particle distribution function. We use this method to simulate problems in MEMS, in which the velocity slip near the wall plays an important role. It is demonstrated that the lattice Boltzmann method can capture the fundamental behaviors in micro-channel flow, including velocity slip, nonlinear pressure drop along the channel and mass flow rate variation with Knudsen number, The Knudsen number dependence of the position of the vortex center and the pressure contour in micro-cavity flows is also demonstrated.
引用
收藏
页码:279 / 289
页数:11
相关论文
共 50 条
  • [21] Magnetic Diffusion using Lattice-Boltzmann
    Fonseca, F.
    REVISTA MEXICANA DE FISICA, 2012, 58 (02) : 188 - 194
  • [22] High-order lattice-Boltzmann
    P. C. Philippi
    D. N. Siebert
    L. A. Hegele Jr
    K. K. Mattila
    Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2016, 38 : 1401 - 1419
  • [23] Lattice-Boltzmann studies of fluid flow in porous media with realistic rock geometries
    Boek, Edo S.
    Venturoli, Maddalena
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 59 (07) : 2305 - 2314
  • [24] A flexible high-performance Lattice Boltzmann GPU code for the simulations of fluid flows in complex geometries
    Bernaschi, Massimo
    Fatica, Massimiliano
    Melchionna, Simone
    Succi, Sauro
    Kaxiras, Efthimios
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2010, 22 (01) : 1 - 14
  • [25] Lattice-Boltzmann methods for suspensions of solid particles
    Ladd, Anthony J. C.
    MOLECULAR PHYSICS, 2015, 113 (17-18) : 2531 - 2537
  • [26] Electroviscous transport problems via lattice-Boltzmann
    Warren, PB
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 1997, 8 (04): : 889 - 898
  • [27] LATTICE-GAS AND LATTICE-BOLTZMANN MODELS OF MISCIBLE FLUIDS
    HOLME, R
    ROTHMAN, DH
    JOURNAL OF STATISTICAL PHYSICS, 1992, 68 (3-4) : 409 - 429
  • [28] Lattice-Boltzmann and meshless point collocation solvers for fluid flow and conjugate heat transfer
    Kalarakis, A. N.
    Bourantas, G. C.
    Skouras, E. D.
    Loukopoulos, V. C.
    Burganos, V. N.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2012, 70 (11) : 1428 - 1442
  • [29] Automatic Evolutionary Modeling by the Lattice-Boltzmann Method
    Chen Ju-hua
    WuhanUniversityJournalofNaturalSciences, 2003, (S1) : 319 - 322
  • [30] MULTICOMPONENT LATTICE-BOLTZMANN MODEL WITH INTERPARTICLE INTERACTION
    SHAN, XW
    DOOLEN, G
    JOURNAL OF STATISTICAL PHYSICS, 1995, 81 (1-2) : 379 - 393