Improving Entity Linking Performance using Frame Semantics

被引:0
|
作者
Nural, Mustafa V. [1 ]
Miller, John A. [1 ]
Arpinar, I. Budak [1 ]
机构
[1] Univ Georgia, Dept Comp Sci, Athens, GA 30602 USA
来源
2013 IEEE SEVENTH INTERNATIONAL CONFERENCE ON SEMANTIC COMPUTING (ICSC 2013) | 2013年
关键词
Frame Semantics; Entity Linking; Entity Disambiguation; Selectional Preferences; Semantic Role Labeling;
D O I
10.1109/ICSC.2013.19
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we investigate the use of Frame Semantics for improving the performance of linking of non-PLO (Person, Location, Organization) entities to Wikipedia articles. We propose an architecture for a system using Frame Semantics and Selectional Preferences (SP) to improve precision of linking non-PLO entities. We present performance results, which suggest that our system provides a mechanism to improve entity linking for non-PLO entities. We also show that Selectional Preferences can contribute for improved entity linking.
引用
收藏
页码:56 / 63
页数:8
相关论文
共 50 条
  • [41] Graph based Tweet Entity Linking using DBpedia
    Kalloubi, Fahd
    Nfaoui, El Habib
    El Beqqali, Omar
    2014 IEEE/ACS 11TH INTERNATIONAL CONFERENCE ON COMPUTER SYSTEMS AND APPLICATIONS (AICCSA), 2014, : 501 - 506
  • [42] Improving Performance of a Distributed File System Using a Speculative Semantics-Based Algorithm
    Krishna, Talluri Lakshmi Siva Rama
    Ragunathan, Thirumalaisamy
    Battula, Sudheer Kumar
    TSINGHUA SCIENCE AND TECHNOLOGY, 2015, 20 (06) : 583 - 593
  • [43] Improving Entity Linking in Chinese Domain by Sense Embedding Based on Graph Clustering
    Zhang, Zhao-Bo
    Zhong, Zhi-Man
    Yuan, Ping-Peng
    Jin, Hai
    JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY, 2023, 38 (01) : 196 - 210
  • [44] Quantifiers in Frame Semantics
    Kallmeyer, Laura
    Richter, Frank
    FORMAL GRAMMAR, FG 2014, 2014, 8612 : 69 - 85
  • [45] Using graph distances for named-entity linking
    Blanco, Roi
    Boldi, Paolo
    Marino, Andrea
    SCIENCE OF COMPUTER PROGRAMMING, 2016, 130 : 24 - 36
  • [46] Improving Thai Named Entity Recognition Performance Using BERT Transformer on Deep Networks
    Praechanya, Nittha
    Sornil, Ohm
    PROCEEDINGS OF 2021 6TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING TECHNOLOGIES (ICMLT 2021), 2021, : 177 - 183
  • [47] Entity Linking and Retrieval
    Meij, Edgar
    Balog, Krisztian
    Odijk, Daan
    SIGIR'13: THE PROCEEDINGS OF THE 36TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH & DEVELOPMENT IN INFORMATION RETRIEVAL, 2013, : 1127 - 1127
  • [48] Visual Entity Linking
    Tilak, Neha
    Gandhi, Sunil
    Oates, Tim
    2017 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2017, : 665 - 672
  • [49] Improving keyphrase extraction using Wikipedia semantics
    Shi, Tianyi
    Jiao, Shidou
    Hou, Junqi
    Li, Minglu
    2008 INTERNATIONAL SYMPOSIUM ON INTELLIGENT INFORMATION TECHNOLOGY APPLICATION, VOL II, PROCEEDINGS, 2008, : 42 - +
  • [50] Enhancing Entity Linking with Contextualized Entity Embeddings
    Xu, Zhenran
    Chen, Yulin
    Shi, Senbao
    Hu, Baotian
    NATURAL LANGUAGE PROCESSING AND CHINESE COMPUTING, NLPCC 2022, PT II, 2022, 13552 : 228 - 239