Research on Option Pricing Model Driven by Fractional Jump-Diffusion Process

被引:0
|
作者
Wei, Zhao [1 ]
机构
[1] Huaihai Inst Technol, Sch Business, Lianyungang 150001, Peoples R China
关键词
Fractional Brownian motion; Jump-diffusion process; Quasi-martingale;
D O I
暂无
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
Considering long memory of volatility of stock return and possibility of important information, this paper explores into the fractional jump-diffusion process. Under the fractional risk neutral measure, the unique equivalent measure is proposed on the basis of Girsanov fractional theorem. With quasi-martingale method, the option pricing model in fractional market is solved. The results indicate that the long memory parameter is an important factor in option pricing.
引用
收藏
页码:965 / 969
页数:5
相关论文
共 50 条
  • [21] Pricing Vulnerable Option under Jump-Diffusion Model with Incomplete Information
    Yang Jiahui
    Zhou Shengwu
    Zhou Haitao
    Guo Kaiqiang
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2019, 2019
  • [22] Option Pricing for a Jump-Diffusion Model with General Discrete Jump-Size Distributions
    Fu, Michael C.
    Li, Bingqing
    Li, Guozhen
    Wu, Rongwen
    MANAGEMENT SCIENCE, 2017, 63 (11) : 3961 - 3977
  • [23] N-Fold compound option pricing with technical risk under fractional jump-diffusion model
    Zhao, Pingping
    Xiang, Kaili
    Chen, Peimin
    OPTIMIZATION, 2023, 72 (03) : 713 - 735
  • [24] An RBF Method for Time Fractional Jump-Diffusion Option Pricing Model under Temporal Graded Meshes
    Gong, Wenxiu
    Xu, Zuoliang
    Sun, Yesen
    AXIOMS, 2024, 13 (10)
  • [25] Convexity preserving jump-diffusion models for option pricing
    Ekstrom, Erik
    Tysk, Johan
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 330 (01) : 715 - 728
  • [26] A jump-diffusion approach to modelling vulnerable option pricing
    Xu, Weidong
    Xu, Weijun
    Li, Hongyi
    Xiao, Weilin
    FINANCE RESEARCH LETTERS, 2012, 9 (01): : 48 - 56
  • [27] Insurance accurate calculation method of option pricing submitting to jump-diffusion process
    Zhang Qi-wen
    Kong Liang
    PROCEEDINGS OF 2007 INTERNATIONAL CONFERENCE ON MANAGEMENT SCIENCE & ENGINEERING (14TH) VOLS 1-3, 2007, : 1888 - +
  • [28] Fractional Jump-diffusion Pricing Model under Stochastic Interest Rate
    Xue, Hong
    Lu, Junxiang
    Li, Qiaoyan
    Wang, Xiaodong
    INFORMATION AND FINANCIAL ENGINEERING, ICIFE 2011, 2011, 12 : 428 - 432
  • [29] Pricing American continuous-installment put option in a jump-diffusion model
    Deng Guohe
    2013 32ND CHINESE CONTROL CONFERENCE (CCC), 2013, : 8289 - 8294
  • [30] Equilibrium Asset and Option Pricing under Jump-Diffusion Model with Stochastic Volatility
    Ruan, Xinfeng
    Zhu, Wenli
    Li, Shuang
    Huang, Jiexiang
    ABSTRACT AND APPLIED ANALYSIS, 2013,