Research on Option Pricing Model Driven by Fractional Jump-Diffusion Process

被引:0
|
作者
Wei, Zhao [1 ]
机构
[1] Huaihai Inst Technol, Sch Business, Lianyungang 150001, Peoples R China
关键词
Fractional Brownian motion; Jump-diffusion process; Quasi-martingale;
D O I
暂无
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
Considering long memory of volatility of stock return and possibility of important information, this paper explores into the fractional jump-diffusion process. Under the fractional risk neutral measure, the unique equivalent measure is proposed on the basis of Girsanov fractional theorem. With quasi-martingale method, the option pricing model in fractional market is solved. The results indicate that the long memory parameter is an important factor in option pricing.
引用
收藏
页码:965 / 969
页数:5
相关论文
共 50 条
  • [11] Option Pricing Model with Transaction Cost in the Jump-Diffusion Environment
    Zhang Yuansi
    CONTEMPORARY INNOVATION AND DEVELOPMENT IN MANAGEMENT SCIENCE, 2012, : 29 - 34
  • [12] Numerical analysis of American option pricing in a jump-diffusion model
    Zhang, XL
    MATHEMATICS OF OPERATIONS RESEARCH, 1997, 22 (03) : 668 - 690
  • [13] A jump-diffusion model for option pricing under fuzzy environments
    Xu, Weidong
    Wu, Chongfeng
    Xu, Weijun
    Li, Hongyi
    INSURANCE MATHEMATICS & ECONOMICS, 2009, 44 (03): : 337 - 344
  • [14] Option Pricing under Double Heston Jump-Diffusion Model with Approximative Fractional Stochastic Volatility
    Chang, Ying
    Wang, Yiming
    Zhang, Sumei
    MATHEMATICS, 2021, 9 (02) : 1 - 10
  • [15] Analysis of a jump-diffusion option pricing model with serially correlated jump sizes
    Lin, Xenos Chang-Shuo
    Miao, Daniel Wei-Chung
    Chao, Wan-Ling
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2018, 47 (04) : 953 - 979
  • [16] Option Pricing under a Mean Reverting Process with Jump-Diffusion and Jump Stochastic Volatility
    Makate, Nonthiya
    Sattayatham, Pairote
    THAI JOURNAL OF MATHEMATICS, 2012, 10 (03): : 651 - 660
  • [17] Compound option pricing under a double exponential Jump-diffusion model
    Liu, Yu-hong
    Jiang, I-Ming
    Hsu, Wei-tze
    NORTH AMERICAN JOURNAL OF ECONOMICS AND FINANCE, 2018, 43 : 30 - 53
  • [18] A Fuzzy Jump-Diffusion Option Pricing Model Based on the Merton Formula
    Mandal, Satrajit
    Bhattacharya, Sujoy
    ASIA-PACIFIC FINANCIAL MARKETS, 2024,
  • [19] Exact and approximated option pricing in a stochastic volatility jump-diffusion model
    D'Ippoliti, Fernanda
    Moretto, Enrico
    Pasquali, Sara
    Trivellato, Barbara
    MATHEMATICAL AND STATISTICAL METHODS FOR ACTUARIAL SCIENCES AND FINANCE, 2010, : 133 - +
  • [20] Option Pricing under the Kou Jump-Diffusion Model: a DG Approach
    Hozman, Jiri
    Tichy, Tomas
    PROCEEDINGS OF THE 45TH INTERNATIONAL CONFERENCE ON APPLICATION OF MATHEMATICS IN ENGINEERING AND ECONOMICS (AMEE'19), 2019, 2172