Density Matrix Renormalization Group in the Heisenberg Picture

被引:54
作者
Hartmann, Michael J. [1 ,2 ,3 ]
Prior, Javier [2 ,3 ,4 ]
Clark, Stephen R. [4 ,5 ]
Plenio, Martin B. [2 ,3 ]
机构
[1] Tech Univ Munich, Dept Phys 1, D-85748 Garching, Germany
[2] Univ London Imperial Coll Sci Technol & Med, Inst Math Sci, London SW7 2PG, England
[3] Univ London Imperial Coll Sci Technol & Med, QOLS, Blackett Lab, London SW7 2BW, England
[4] Univ Oxford, Clarendon Lab, Oxford OX1 3PU, England
[5] Natl Univ Singapore, Ctr Quantum Technol, Singapore 117543, Singapore
基金
英国工程与自然科学研究理事会;
关键词
QUANTUM PHASE-TRANSITIONS; SPIN CHAINS; DYNAMICS; SYSTEMS; PHYSICS; GASES;
D O I
10.1103/PhysRevLett.102.057202
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In some cases the state of a quantum system with a large number of subsystems can be approximated efficiently by the density-matrix renormalization group, which makes use of redundancies in the description of the state. Here we show that the achievable efficiency can be much better when performing density-matrix renormalization group calculations in the Heisenberg picture, as only the observable of interest but not the entire state is considered. In some nontrivial cases, this approach can even be exact for finite bond dimensions.
引用
收藏
页数:4
相关论文
共 35 条
[1]   Photon-blockade-induced Mott transitions and XY spin models in coupled cavity arrays [J].
Angelakis, Dimitris G. ;
Santos, Marcelo Franca ;
Bose, Sougato .
PHYSICAL REVIEW A, 2007, 76 (03)
[2]   Entanglement properties of the harmonic chain [J].
Audenaert, K ;
Eisert, J ;
Plenio, MB ;
Werner, RR .
PHYSICAL REVIEW A, 2002, 66 (04) :14
[3]   Many-body physics with ultracold gases [J].
Bloch, Immanuel ;
Dalibard, Jean ;
Zwerger, Wilhelm .
REVIEWS OF MODERN PHYSICS, 2008, 80 (03) :885-964
[4]   Evolution of entanglement entropy in one-dimensional systems [J].
Calabrese, P ;
Cardy, J .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2005, :15-38
[5]   Entanglement-area law for general bosonic harmonic lattice systems [J].
Cramer, M ;
Eisert, J ;
Plenio, MB ;
Dreissig, J .
PHYSICAL REVIEW A, 2006, 73 (01)
[6]   Exact relaxation in a class of nonequilibrium quantum lattice systems [J].
Cramer, M. ;
Dawson, C. M. ;
Eisert, J. ;
Osborne, T. J. .
PHYSICAL REVIEW LETTERS, 2008, 100 (03)
[7]   Equivalence of the variational matrix product method and the density matrix renormalization group applied to spin chains [J].
Dukelsky, J ;
Martin-Delgado, MA ;
Nishino, T ;
Sierra, G .
EUROPHYSICS LETTERS, 1998, 43 (04) :457-462
[8]  
EISERT J, REV MOD PHY IN PRESS
[9]   FINITELY CORRELATED STATES ON QUANTUM SPIN CHAINS [J].
FANNES, M ;
NACHTERGAELE, B ;
WERNER, RF .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 144 (03) :443-490
[10]   Quantum phase transitions and vortex dynamics in superconducting networks [J].
Fazio, R ;
van der Zant, H .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2001, 355 (04) :235-334