Assimilation of Earth Observation Data Over Cropland and Grassland Sites into a Simple GPP Model

被引:5
|
作者
Meroni, Michele [1 ]
Fasbender, Dominique [1 ]
Lopez-Lozano, Raul [1 ]
Migliavacca, Mirco [2 ]
机构
[1] European Commiss, JRC, Via E Fermi 2749, I-21027 Ispra, Italy
[2] Max Planck Inst Biogeochem, Hanks Knoll Str 10, D-07745 Jena, Germany
关键词
gross primary production; crop; grassland; MODIS; data assimilation; LIGHT-USE EFFICIENCY; GROSS PRIMARY PRODUCTION; NET ECOSYSTEM EXCHANGE; LEAF-AREA; EDDY COVARIANCE; CARBON-DIOXIDE; PARAMETERIZED MODEL; FLUXNET SITES; TIME-SERIES; PRODUCTIVITY;
D O I
10.3390/rs11070749
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The application of detailed process-oriented simulation models for gross primary production (GPP) estimation is constrained by the scarcity of the data needed for their parametrization. In this manuscript, we present the development and test of the assimilation of Moderate Resolution Imaging Spectroradiometer (MODIS) satellite Normalized Difference Vegetation Index (NDVI) observations into a simple process-based model driven by basic meteorological variables (i.e., global radiation, temperature, precipitation and reference evapotranspiration, all from global circulation models of the European Centre for Medium-Range Weather Forecasts). The model is run at daily time-step using meteorological forcing and provides estimates of GPP and LAI, the latter used to simulate MODIS NDVI though the coupling with the radiative transfer model PROSAIL5B. Modelled GPP is compared with the remote sensing-driven MODIS GPP product (MOD17) and the quality of both estimates are assessed against GPP from European eddy covariance flux sites over crops and grasslands. Model performances in GPP estimation (R-2 = 0.67, RMSE = 2.45 gC m(-2) d(-1), MBE = -0.16 gC m(-2) d(-1)) were shown to outperform those of MOD17 for the investigated sites (R-2 = 0.53, RMSE = 3.15 gC m(-2) d(-1), MBE = -1.08 gC m(-2) d(-1)).
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Assimilation of paleo-data in a simple Earth system model
    Hargreaves, JC
    Annan, JD
    CLIMATE DYNAMICS, 2002, 19 (5-6) : 371 - 381
  • [2] Assimilation of paleo-data in a simple Earth system model
    J. Hargreaves
    J. Annan
    Climate Dynamics, 2002, 19 : 371 - 381
  • [3] Data assimilation: making sense of Earth Observation
    Lahoz, William A.
    Schneider, Philipp
    FRONTIERS IN ENVIRONMENTAL SCIENCE, 2014, 2
  • [4] Making the most of earth observation with data assimilation
    O' Neill, A
    Mathieu, PP
    Zehner, C
    ESA BULLETIN-EUROPEAN SPACE AGENCY, 2004, (118) : 32 - 38
  • [5] Earth Observation Data-Driven Cropland Soil Monitoring: A Review
    Tziolas, Nikolaos
    Tsakiridis, Nikolaos
    Chabrillat, Sabine
    Dematte, Jose A. M.
    Ben-Dor, Eyal
    Gholizadeh, Asa
    Zalidis, George
    van Wesemael, Bas
    REMOTE SENSING, 2021, 13 (21)
  • [6] Leveraging the application of Earth observation data for mapping cropland soils in Brazil
    Safanelli, Jose L.
    Dematte, Jose A. M.
    Chabrillat, Sabine
    Poppiel, Raul R.
    Rizzo, Rodnei
    Dotto, Andre C.
    Silvero, Nelida E. Q.
    Mendes, Wanderson de S.
    Bonfatti, Benito R.
    Ruiz, Luis F. C.
    ten Caten, Alexandre
    Dalmolin, Ricardo S. D.
    GEODERMA, 2021, 396
  • [7] Leveraging the application of Earth observation data for mapping cropland soils in Brazil
    Safanelli, José L.
    Demattê, José A.M.
    Chabrillat, Sabine
    Poppiel, Raul R.
    Rizzo, Rodnei
    Dotto, André C.
    Silvero, Nélida E.Q.
    Mendes, Wanderson de S.
    Bonfatti, Benito R.
    Ruiz, Luis F.C.
    ten Caten, Alexandre
    Dalmolin, Ricardo S.D.
    Demattê, José A.M. (jamdemat@usp.br), 1600, Elsevier B.V. (396):
  • [8] Correcting observation model error in data assimilation
    Hamilton, Franz
    Berry, Tyrus
    Sauer, Timothy
    CHAOS, 2019, 29 (05)
  • [9] The impact of localization and observation averaging for convective-scale data assimilation in a simple stochastic model
    Craig, George C.
    Wuersch, Michael
    QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2013, 139 (671) : 515 - 523
  • [10] Estimation of FAPAR over Croplands Using MISR Data and the Earth Observation Land Data Assimilation System (EO-LDAS)
    Chernetskiy, Maxim
    Gomez-Dans, Jose
    Gobron, Nadine
    Morgan, Olivier
    Lewis, Philip
    Truckenbrodt, Sina
    Schmullius, Christiane
    REMOTE SENSING, 2017, 9 (07):