共 50 条
INFINITELY MANY ARBITRARILY SMALL SOLUTIONS FOR SINGULAR ELLIPTIC PROBLEMS WITH CRITICAL SOBOLEV-HARDY EXPONENTS
被引:19
|作者:
He, Xiaoming
[1
,2
]
Zou, Wenming
[1
]
机构:
[1] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
[2] Cent Univ Nationalities, Dept Math Sci, Beijing 100081, Peoples R China
基金:
中国博士后科学基金;
关键词:
singular elliptic equation;
multiple solutions;
critical Sobolev Hardy growth;
compactness;
MULTIPLE SOLUTIONS;
EXISTENCE;
EQUATIONS;
CONSTANT;
LEMMA;
D O I:
10.1017/S0013091506001568
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
Let Omega subset of R-N be a bounded domain such that 0 is an element of Omega, N >= 3, 2*(s) = 2(N - s) / (N - 2), 0 <= s < 2, 0 <= mu < mu = 1/4(N - 2)(2). We obtain the existence of infinitely many solutions for the singular critical problem Delta u - mu(u / vertical bar x vertical bar(2)) = (vertical bar u vertical bar(2)*((s)-2) / vertical bar x vertical bar(s))u + lambda f (x, u) with Dirichlet boundary condition for suitable positive number lambda.
引用
收藏
页码:97 / 108
页数:12
相关论文