Branch decomposition heuristics for linear matroids

被引:3
作者
Ma, Jing [1 ]
Margulies, Susan [2 ]
Hicks, Illya V. [3 ]
Goins, Edray [4 ]
机构
[1] Stanford Univ, Dept Management Sci & Engn, Stanford, CA 94305 USA
[2] Penn State Univ, Dept Math, University Pk, PA 16802 USA
[3] Rice Univ, Dept Computat & Appl Math, Houston, TX 77251 USA
[4] Purdue Univ, Dept Math, W Lafayette, IN 47907 USA
基金
美国国家科学基金会;
关键词
Linear matroid; Branchwidth; Branch decomposition; Classification; Max-flow; Matroid intersection; DECOMPOSABLE GRAPHS; WIDTH; MINORS;
D O I
10.1016/j.disopt.2012.11.004
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
This paper presents three new heuristics which utilize classification, max-flow, and matroid intersection algorithms respectively to derive near-optimal branch decompositions for linear matroids. In the literature, there are already excellent heuristics for graphs, however, no practical branch decomposition methods for general linear matroids have been addressed yet. Introducing a "measure" which compares the "similarity" of elements of a linear matroid, this work reforms the linear matroid into a similarity graph. Then, the classification method, the max-flow method, and the mat-flow method, all based on the similarity graph, are utilized on the similarity graph to derive separations for a near-optimal branch decomposition. Computational results using the methods on linear matroid instances are shown respectively. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:102 / 119
页数:18
相关论文
共 30 条
  • [1] EIGENVALUES AND EXPANDERS
    ALON, N
    [J]. COMBINATORICA, 1986, 6 (02) : 83 - 96
  • [2] [Anonymous], 2006, GRAPH THEORY
  • [3] EASY PROBLEMS FOR TREE-DECOMPOSABLE GRAPHS
    ARNBORG, S
    LAGERGREN, J
    SEESE, D
    [J]. JOURNAL OF ALGORITHMS, 1991, 12 (02) : 308 - 340
  • [4] Laplacian eigenmaps for dimensionality reduction and data representation
    Belkin, M
    Niyogi, P
    [J]. NEURAL COMPUTATION, 2003, 15 (06) : 1373 - 1396
  • [5] Belkin M., 2003, ADV NEURAL INFORM PR, V15, P953
  • [6] LINEAR-TIME COMPUTATION OF OPTIMAL SUBGRAPHS OF DECOMPOSABLE GRAPHS
    BERN, MW
    LAWLER, EL
    WONG, AL
    [J]. JOURNAL OF ALGORITHMS, 1987, 8 (02) : 216 - 235
  • [7] Treewidth computations I. Upper bounds
    Bodlaender, Hans L.
    Koster, Arie M. C. A.
    [J]. INFORMATION AND COMPUTATION, 2010, 208 (03) : 259 - 275
  • [8] Borie R.B., 1992, ALGORITHMICA, V7, P555
  • [9] Chung F., 1992, Spectral Graph Theory
  • [10] Tour merging via branch-decomposition
    Cook, W
    Seymour, P
    [J]. INFORMS JOURNAL ON COMPUTING, 2003, 15 (03) : 233 - 248