Reinvestigation of the MgSiO3 perovskite structure at high pressure

被引:37
|
作者
Sugahara, M [1 ]
Yoshiasa, A
Komatsu, Y
Yamanaka, T
Bolfan-Casanova, N
Nakatsuka, A
Sasaki, S
Tanaka, M
机构
[1] Kumamoto Univ, Fac Sci, Kumamoto 8600909, Japan
[2] Osaka Univ, Grad Sch Sci, Osaka 5600043, Japan
[3] Univ Clermont Ferrand, CNRS, Lab Magmas & Volcans, Aubiere, France
[4] Yamaguchi Univ, Fac Engn, Ube, Yamaguchi 758611, Japan
[5] Tokyo Inst Technol, Yokohama, Kanagawa 2268502, Japan
[6] KEK, Photon Factory, Tsukuba, Ibaraki 3050801, Japan
关键词
crystal structure; high-pressure study; MgSiO3; perovskite; pressure responses; thermal vibration;
D O I
10.2138/am.2006.1980
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
High-pressure single-crystal X-ray diffraction experiments of MgSiO3 perovskite have been carried out up to 15 GPa in a diamond-anvil cell using synchrotron radiation. Precise crystal structural parameters, including the anisotropic displacement parameters of every atom in MgSiO3, are determined under high pressure. In the pressure range up to 15 GPa, the most important responses of the structure are the compressions Of SiO6 and MgO8 polyhedra and an increase in tilting of SiO6 octahedra represented by the decrease in angles between octahedra (both Si-O2-Si angle in the a-b plane and Si-O1-Si angle in the b-c plane decrease). The degree of the change in both angles in the a-b and b-c planes is the same. The amplitude of mean square displacement for the Mg atom has the largest value in the structures and its thermal vibration is significantly anisotropic at ambient pressure. Under high pressure, all atoms in the structure have obvious anisotropy of thermal vibration and the largest amplitudes of thermal vibration for Mg, Si, and O2 atoms are directed toward vacant space in the structure. Anisotropy of the structure increases with pressure.
引用
收藏
页码:533 / 536
页数:4
相关论文
共 50 条
  • [31] Chromium solubility in MgSiO3 ilmenite at high pressure
    Bindi, Luca
    Sirotkina, Ekaterina A.
    Bobrov, Andrey V.
    Irifune, Tetsuo
    PHYSICS AND CHEMISTRY OF MINERALS, 2014, 41 (07) : 519 - 526
  • [32] Equation of state of MgSiO3 with the perovskite structure based on experimental measurement
    Saxena, SK
    Dubrovinsky, LS
    Tutti, F
    Le Bihan, T
    AMERICAN MINERALOGIST, 1999, 84 (03) : 226 - 232
  • [33] ELASTICITY AND EQUATION OF STATE OF MGSIO3 PEROVSKITE
    COHEN, RE
    GEOPHYSICAL RESEARCH LETTERS, 1987, 14 (10) : 1053 - 1056
  • [34] CRYSTAL-GROWTH OF MGSIO3 PEROVSKITE
    ITO, E
    WEIDNER, DJ
    GEOPHYSICAL RESEARCH LETTERS, 1986, 13 (05) : 464 - 466
  • [35] LATTICE-DYNAMICS OF MGSIO3 PEROVSKITE
    CHOUDHURY, N
    CHAPLOT, SL
    RAO, KR
    GHOSE, S
    PRAMANA, 1988, 30 (05) : 423 - 428
  • [36] A COMPUTER-SIMULATION OF THE STRUCTURE AND ELASTIC PROPERTIES OF MGSIO3 PEROVSKITE
    WALL, A
    PRICE, GD
    PARKER, SC
    MINERALOGICAL MAGAZINE, 1986, 50 (358) : 693 - 707
  • [37] Stability of MgSiO3 perovskite in the lower mantle
    Shim, SH
    EARTH'S DEEP MANTLE: STRUCTURE, COMPOSITION, AND EVOLUTION, 2005, 160 : 261 - 282
  • [38] Molecular dynamics of MgSiO3 perovskite melting
    Liu, ZJ
    Cheng, XL
    Yang, XD
    Zhang, H
    Cai, LC
    CHINESE PHYSICS, 2006, 15 (01): : 224 - 228
  • [39] Oxygen ionic conduction in MgSiO3 perovskite
    Dobson, D
    PHYSICS OF THE EARTH AND PLANETARY INTERIORS, 2003, 139 (1-2) : 55 - 64
  • [40] STRUCTURE AND CRYSTAL-CHEMISTRY OF PEROVSKITE-TYPE MGSIO3
    YAGI, T
    MAO, HK
    BELL, PM
    PHYSICS AND CHEMISTRY OF MINERALS, 1978, 3 (02) : 97 - 110