CO2 enhanced oil recovery and storage using a gravity-enhanced process

被引:39
|
作者
Li, Liwei [1 ]
Khorsandi, Saeid [1 ]
Johns, Russell T. [1 ]
Dilmore, Robert M. [2 ]
机构
[1] Penn State Univ, Dept Energy & Mineral Engn, University Pk, PA 16802 USA
[2] US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA
基金
美国能源部;
关键词
CO2; storage; Enhanced oil recovery (EOR); Heterogeneity; Horizontal wells; Gravity enhanced; Inspectional analysis; RELATIVE PERMEABILITY; SCREENING CRITERIA; CARBON CAPTURE; FLOW; SIMULATIONS; IMPACT; MODEL;
D O I
10.1016/j.ijggc.2015.09.006
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
CO2 flooding offers a means to recover significant amounts of oil while simultaneously sequestering CO2. Recent methods for CO2 geological storage have focused on CO2 injection into deep brine aquifers, or by water-alternating-gas (WAG) injection in a miscible gas flooding process using vertical wells. There is significant uncertainty in the amount of CO2 that can be stored using these methods owing to reservoir heterogeneity and variations in reservoir/fluid parameters. It would be useful therefore to have a more robust process that can also increase both CO2 storage and oil recovery in a symbiotic relationship, where increased storage leads to greater oil recovery. This paper considers an alternative process that maximizes both storage and oil recovery simultaneously using only horizontal wells in a gravity-enhanced miscible process. A reduced-order model (ROM) is developed to consider a wide range of reservoir heterogeneities and fluid properties. Monte-Carlo simulations using the ROM show that achieving very high storage and oil recovery is possible using the gravity-enhanced process and that the approach is very robust. For example, after 2.0 moveable pore volumes injected (MPVI), probabilistic forecasts show that CO2 storage efficiency across two standard deviations ranges from about 81% to 93%, indicating that nearly all of the available pore space (excluding immobile water) at the end of injection is occupied by CO2. Oil recoveries after 2.0 MPVI varied from 79% to 93% of the original mass of oil-in-place (OOIP). These storage and recovery efficiencies are significantly greater than any process reported to date. Response functions developed can also be used to estimate the maximum amount of stored CO2 and corresponding oil recoveries for a wide range of reservoir and fluid properties. Such estimates are critical for regional and national assessment of CO2 storage potential. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:502 / 515
页数:14
相关论文
共 50 条
  • [1] On the CO2 storage potential of cyclic CO2 injection process for enhanced oil recovery
    Abedini, Ali
    Torabi, Farshid
    FUEL, 2014, 124 : 14 - 27
  • [2] On the sustainability of CO2 storage through CO2 - Enhanced oil recovery
    Farajzadeh, R.
    Eftekhari, A. A.
    Dafnomilis, G.
    Lake, L. W.
    Bruining, J.
    APPLIED ENERGY, 2020, 261
  • [3] Examining the potential of immiscible CO2 for gravity-assisted enhanced oil recovery and storage
    Hatchell, Daniel
    Benson, Sally
    13TH INTERNATIONAL CONFERENCE ON GREENHOUSE GAS CONTROL TECHNOLOGIES, GHGT-13, 2017, 114 : 6980 - 6988
  • [4] CO2 Foam and CO2 Polymer Enhanced Foam for Heavy Oil Recovery and CO2 Storage
    Telmadarreie, Ali
    Trivedi, Japan J.
    ENERGIES, 2020, 13 (21)
  • [5] Characterization of CO2 storage and enhanced oil recovery in residual oil zones
    Chen, Bailian
    Pawar, Rajesh J.
    ENERGY, 2019, 183 : 291 - 304
  • [6] Enhanced Oil Recovery and CO2 Storage Performance in Continental Shale Oil Reservoirs Using CO2 Pre-Injection Fracturing
    Zhang, An
    Lei, Yalin
    Zhang, Chenjun
    Tao, Jiaping
    PROCESSES, 2023, 11 (08)
  • [7] Evaluation of CO2 enhanced oil recovery and CO2 storage potential in oil reservoirs of petroliferous sedimentary basin, China
    Wang, Peng-Tao
    Wu, Xi
    Ge, Gangke
    Wang, Xiaoyan
    Xu, Mao
    Wang, Feiyin
    Zhang, Yang
    Wang, Haifeng
    Zheng, Yan
    SCIENCE AND TECHNOLOGY FOR ENERGY TRANSITION, 2023, 78 (04)
  • [8] Field-scale simulation of CO2 enhanced oil recovery and storage through SWAG injection using laboratory estimated relative permeabilities
    Kamali, Fatemeh
    Hussain, Furqan
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2017, 156 : 396 - 407
  • [9] Simulation of CO2 enhanced oil recovery and storage in shale oil reservoirs: Unveiling the impacts of nano-confinement and oil composition
    Song, Yilei
    Song, Zhaojie
    Chen, Zhangxin
    Mo, Yasi
    Zhou, Qiancheng
    Tian, Shouceng
    ADVANCES IN GEO-ENERGY RESEARCH, 2024, 13 (02): : 106 - 118
  • [10] CO2 flooding enhanced oil recovery evaluated using magnetic resonance imaging technique
    Zhao, Yuechao
    Zhang, Yuying
    Lei, Xu
    Zhang, Yi
    Song, Yongchen
    ENERGY, 2020, 203