Nonlinear speed-ups in ultracold quantum gases

被引:9
作者
Deffner, Sebastian [1 ]
机构
[1] Univ Maryland Baltimore Cty, Dept Phys, Baltimore, MD 21250 USA
基金
美国国家科学基金会;
关键词
GROSS-PITAEVSKII EQUATION; NUMERICAL-SOLUTION; LIMITS; PROPAGATION; INFORMATION; DYNAMICS; VORTEX;
D O I
10.1209/0295-5075/ac9fed
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
- Quantum mechanics is an inherently linear theory. However, collective effects in many body quantum systems can give rise to effectively nonlinear dynamics. In the present work, we analyze whether and to what extent such nonlinear effects can be exploited to enhance the rate of quantum evolution. To this end, we compute a suitable version of the quantum speed limit for numerical and analytical examples. We find that the quantum speed limit grows with the strength of the nonlinearity, yet it does not trivially scale with the "degree" of nonlinearity. This is numerically demonstrated for the parametric harmonic oscillator obeying Gross-Pitaevskii and Kolomeisky dynamics, and analytically for expanding boxes under Gross-Pitaevskii dynamics.
引用
收藏
页数:8
相关论文
共 76 条
[1]   Quantum computing, postselection, and probabilistic polynomial-time [J].
Aaronson, S .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2005, 461 (2063) :3473-3482
[2]  
Abramowitz M., 1964, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, V55, DOI DOI 10.1119/1.15378
[3]   Nonlinear Optics Quantum Computing with Circuit QED [J].
Adhikari, Prabin ;
Hafezi, Mohammad ;
Taylor, J. M. .
PHYSICAL REVIEW LETTERS, 2013, 110 (06)
[4]   Bose-Einstein condensation dynamics from the numerical solution of the Gross-Pitaevskii equation [J].
Adhikari, SK ;
Muruganandam, P .
JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2002, 35 (12) :2831-2843
[5]   From quantum speed limits to energy-efficient quantum gates [J].
Aifer, Maxwell ;
Deffner, Sebastian .
NEW JOURNAL OF PHYSICS, 2022, 24 (05)
[6]   SOLITON PROPAGATION IN NONUNIFORM MEDIA [J].
BALAKRISHNAN, R .
PHYSICAL REVIEW A, 1985, 32 (02) :1144-1149
[7]   Numerical solution of the Gross-Pitaevskii equation for Bose-Einstein condensation [J].
Bao, WZ ;
Jaksch, D ;
Markowich, PA .
JOURNAL OF COMPUTATIONAL PHYSICS, 2003, 187 (01) :318-342
[8]   ENERGY-COST OF INFORMATION-TRANSFER [J].
BEKENSTEIN, JD .
PHYSICAL REVIEW LETTERS, 1981, 46 (10) :623-626
[9]   Dynamics of matter-wave condensates with time-dependent two-and three-body interactions trapped by a linear potential in the presence of atom gain or loss [J].
Belobo, D. Belobo ;
Ben-Bolie, G. H. ;
Kofane, T. C. .
PHYSICAL REVIEW E, 2014, 89 (04)
[10]   Faster than hermitian quantum mechanics [J].
Bender, Carl M. ;
Brody, Dorje C. ;
Jones, Hugh F. ;
Meister, Bernhard K. .
PHYSICAL REVIEW LETTERS, 2007, 98 (04)