Hadwiger's Theorem for definable functions

被引:20
作者
Baryshnikov, Y. [1 ,2 ]
Ghrist, R. [3 ,4 ]
Wright, M. [5 ]
机构
[1] Univ Illinois, Dept Math, Urbana, IL USA
[2] Univ Illinois, Dept Elect & Comp Engn, Urbana, IL USA
[3] Univ Penn, Dept Math, Philadelphia, PA 19104 USA
[4] Univ Penn, Dept Elect Syst Engn, Philadelphia, PA 19104 USA
[5] Huntington Univ, Dept Math, Huntington, IN USA
关键词
Valuations; Hadwiger measure; Intrinsic volumes; Euler characteristic; VALUATIONS; CURVATURE;
D O I
10.1016/j.aim.2013.07.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Hadwiger's Theorem states that E-n-invariant convex-continuous valuations of definable sets in R-n are linear combinations of intrinsic volumes. We lift this result from sets to data distributions over sets, specifically, to definable R-valued functions on R-n. This generalizes intrinsic volumes to (dual pairs of) non-linear valuations on functions and provides a dual pair of Hadwiger classification theorems. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:573 / 586
页数:14
相关论文
共 29 条
[11]  
Coste M., 2000, INTRO O MINIMAL GEOM
[12]  
Federer H., 1969, Geometric Measure Theory. Classics in Mathematics
[13]  
Fu J., 2011, NOTES INTEGRAL GEOME
[14]   CURVATURE MEASURES OF SUBANALYTIC SETS [J].
FU, JHG .
AMERICAN JOURNAL OF MATHEMATICS, 1994, 116 (04) :819-880
[15]   Euler-Bessel and Euler-Fourier transforms [J].
Ghrist, Robert ;
Robinson, Michael .
INVERSE PROBLEMS, 2011, 27 (12)
[16]  
Hadwiger H., 1956, RUSS MATH SURV, V20, P136
[17]  
Hadwiger H., 1956, Abh. Math. Semin. Univ. Hambg., V20, P136
[18]  
KASHIWARA M, 1985, ASTERISQUE, P193
[19]  
Kashiwara M., 1990, Grundlehren Math. Wiss., V292
[20]   A short proof of Hadwiger's characterization theorem [J].
Klain, DA .
MATHEMATIKA, 1995, 42 (84) :329-339