Hadwiger's Theorem for definable functions

被引:20
作者
Baryshnikov, Y. [1 ,2 ]
Ghrist, R. [3 ,4 ]
Wright, M. [5 ]
机构
[1] Univ Illinois, Dept Math, Urbana, IL USA
[2] Univ Illinois, Dept Elect & Comp Engn, Urbana, IL USA
[3] Univ Penn, Dept Math, Philadelphia, PA 19104 USA
[4] Univ Penn, Dept Elect Syst Engn, Philadelphia, PA 19104 USA
[5] Huntington Univ, Dept Math, Huntington, IN USA
关键词
Valuations; Hadwiger measure; Intrinsic volumes; Euler characteristic; VALUATIONS; CURVATURE;
D O I
10.1016/j.aim.2013.07.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Hadwiger's Theorem states that E-n-invariant convex-continuous valuations of definable sets in R-n are linear combinations of intrinsic volumes. We lift this result from sets to data distributions over sets, specifically, to definable R-valued functions on R-n. This generalizes intrinsic volumes to (dual pairs of) non-linear valuations on functions and provides a dual pair of Hadwiger classification theorems. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:573 / 586
页数:14
相关论文
共 29 条
[1]  
Adler R., 2011, SPRINGER LECT NOTES, V2019
[2]  
Adler R. J., 1981, GEOMETRY RANDOM FIEL
[3]   Theory of valuations on manifolds: A survey [J].
Alesker, Semyon .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2007, 17 (04) :1321-1341
[4]   Valuations on Manifolds and Integral Geometry [J].
Alesker, Semyon .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2010, 20 (05) :1073-1143
[5]  
[Anonymous], 1997, LEZIONI LINCEE
[6]   Euler integration over definable functions [J].
Baryshnikov, Yuliy ;
Ghrist, Robert .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (21) :9525-9530
[7]   TARGET ENUMERATION VIA EULER CHARACTERISTIC INTEGRALS [J].
Baryshnikov, Yuliy ;
Ghrist, Robert .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2009, 70 (03) :825-844
[8]  
Bernig A, 2012, SPRINGER PROC MATH, V17, P107, DOI 10.1007/978-3-642-22842-1_5
[9]  
Bobrowski O., 2011, ARXIV10035175
[10]   ON THE CURVATURE OF PIECEWISE FLAT SPACES [J].
CHEEGER, J ;
MULLER, W ;
SCHRADER, R .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1984, 92 (03) :405-454