Electromechanical Mode Online Estimation Using Regularized Robust RLS Methods

被引:185
|
作者
Zhou, Ning [1 ]
Trudnowski, Daniel J. [2 ]
Pierre, John W. [3 ]
Mittelstadt, William A. [4 ]
机构
[1] Pacific NW Natl Lab, Richland, WA 99352 USA
[2] Montana Tech Univ Montana, Butte, MT 59701 USA
[3] Univ Wyoming, Laramie, WY 82071 USA
[4] Bonneville Power Adm, Vancouver, WA 98666 USA
关键词
Autoregressive moving average processes; least squares methods; power system identification; power system measurements; power system monitoring; power system parameter estimation; power system stability; recursive estimation; robustness;
D O I
10.1109/TPWRS.2008.2002173
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper proposes a regularized robust recursive least squares (R3LS) method for online estimation of power-system electromechanical modes based on synchronized phasor measurement unit (PMU) data. The proposed method utilizes an autoregressive moving average exogenous (ARMAX) model to account for typical measurement data, which includes low-level pseudo-random probing, ambient, and ringdown data. A robust objective function is utilized to reduce the negative influence from nontypical data, which include outliers and missing data. A dynamic regularization method is introduced to help include a priori knowledge about the system and reduce the influence of under-determined problems. Based on a 17-machine simulation model, it is shown through the Monte Carlo method that the proposed R3LS method can estimate and track electromechanical modes by effectively using combined typical and nontypical measurement data.
引用
收藏
页码:1670 / 1680
页数:11
相关论文
共 50 条
  • [41] Online Inertia Estimation Using Electromechanical Oscillation Modal Extracted from Synchronized Ambient Data
    Bo Wang
    Deyou Yang
    Guowei Cai
    Jin Ma
    Zhe Chen
    Lixin Wang
    Journal of Modern Power Systems and Clean Energy, 2022, 10 (01) : 241 - 244
  • [42] A Robust and Regularized Algorithm for Recursive Total Least Squares Estimation
    Koide, Hugo
    Vayssettes, Jeremy
    Mercere, Guillaume
    IEEE CONTROL SYSTEMS LETTERS, 2024, 8 : 1006 - 1011
  • [43] Robust Bayesian Regularized Estimation Based on t Regression Model
    Li, Zean
    Zhao, Andweihua
    JOURNAL OF PROBABILITY AND STATISTICS, 2015, 2015
  • [44] Regularized Robust Confidence Interval Estimation in Cognitive Diagnostic Models
    Fox, Candice Pattisapu
    Golden, Richard M.
    QUANTITATIVE PSYCHOLOGY, 2023, 422 : 233 - 242
  • [45] Robust Regularized Locality Preserving Indexing for Fiedler Vector Estimation
    Tastan, Aylin
    Muma, Michael
    Zoubir, Abdelhak M.
    IEEE OPEN JOURNAL OF SIGNAL PROCESSING, 2024, 5 : 867 - 885
  • [46] Identification of microbiota dynamics using robust parameter estimation methods
    Chung, Matthias
    Krueger, Justin
    Pop, Mihai
    MATHEMATICAL BIOSCIENCES, 2017, 294 : 71 - 84
  • [47] Robust motion estimation methods using gradient orientation information
    Kondo, Toshiaki
    Kongprawechnon, Waree
    SCIENCEASIA, 2009, 35 (02): : 196 - 202
  • [48] Regularized robust estimation of mean and covariance matrix for incomplete data
    Liu, Junyan
    Palomar, Daniel P.
    SIGNAL PROCESSING, 2019, 165 : 278 - 291
  • [49] A regularized state estimation scheme for a robust monitoring of the distribution grid
    Tsitsimelis, Achilleas
    Anton-Haro, Carles
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2020, 117 (117)
  • [50] Online Inertia Estimation Using Electromechanical Oscillation Modal Extracted from Synchronized Ambient Data
    Wang, Bo
    Yang, Deyou
    Cai, Guowei
    Ma, Jin
    Chen, Zhe
    Wang, Lixin
    JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, 2022, 10 (01) : 241 - 244