Electromechanical Mode Online Estimation Using Regularized Robust RLS Methods

被引:185
|
作者
Zhou, Ning [1 ]
Trudnowski, Daniel J. [2 ]
Pierre, John W. [3 ]
Mittelstadt, William A. [4 ]
机构
[1] Pacific NW Natl Lab, Richland, WA 99352 USA
[2] Montana Tech Univ Montana, Butte, MT 59701 USA
[3] Univ Wyoming, Laramie, WY 82071 USA
[4] Bonneville Power Adm, Vancouver, WA 98666 USA
关键词
Autoregressive moving average processes; least squares methods; power system identification; power system measurements; power system monitoring; power system parameter estimation; power system stability; recursive estimation; robustness;
D O I
10.1109/TPWRS.2008.2002173
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper proposes a regularized robust recursive least squares (R3LS) method for online estimation of power-system electromechanical modes based on synchronized phasor measurement unit (PMU) data. The proposed method utilizes an autoregressive moving average exogenous (ARMAX) model to account for typical measurement data, which includes low-level pseudo-random probing, ambient, and ringdown data. A robust objective function is utilized to reduce the negative influence from nontypical data, which include outliers and missing data. A dynamic regularization method is introduced to help include a priori knowledge about the system and reduce the influence of under-determined problems. Based on a 17-machine simulation model, it is shown through the Monte Carlo method that the proposed R3LS method can estimate and track electromechanical modes by effectively using combined typical and nontypical measurement data.
引用
收藏
页码:1670 / 1680
页数:11
相关论文
共 50 条
  • [1] Electromechanical Mode On-line Estimation using Regularized Robust RLS Methods
    Zhou, Ning
    Trudnowski, Dan
    Pierre, John
    Mittelstadt, William
    IEEE POWER AND ENERGY SOCIETY GENERAL MEETING 2010, 2010,
  • [2] Robust RLS methods for online estimation of power system electromechanical modes
    Zhou, Ning
    Pierre, John W.
    Trudnowski, Daniel J.
    Guttromson, Ross T.
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2007, 22 (03) : 1240 - 1249
  • [3] Robust RLS Methods for On-line Estimation of Power System Electromechanical Modes
    Zhou, Ning
    Pierre, John
    Trudnowski, Daniel
    Guttromson, Ross
    2008 IEEE POWER & ENERGY SOCIETY GENERAL MEETING, VOLS 1-11, 2008, : 5417 - 5417
  • [4] Ambient Data-Based Online Electromechanical Mode Estimation by Error-Feedback Lattice RLS Filter
    Setareh, Mohammad
    Parniani, Mostafa
    Aminifar, Farrokh
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2018, 33 (04) : 3745 - 3756
  • [5] Distributed Electromechanical Oscillation Mode Online Estimation
    Liu, D.
    Guan, Q. Y.
    Zhang, H. N.
    INTERNATIONAL CONFERENCE ON CONTROL AND AUTOMATION (ICCA 2016), 2016, : 300 - 306
  • [6] ROBUST VARIABLE-REGULARIZED RLS ALGORITHMS
    Elisei-Iliescu, Camelia
    Stanciu, Cristian
    Paleologu, Constantin
    Benesty, Jacob
    Anghel, Cristian
    Ciochina, Silviu
    2017 HANDS-FREE SPEECH COMMUNICATIONS AND MICROPHONE ARRAYS (HSCMA 2017), 2017, : 171 - 175
  • [7] ROBUST HARMONIC ESTIMATION USING FORGETTING FACTOR RLS
    Sahoo, H. K.
    Sharma, Pooja
    Rath, N. P.
    2011 ANNUAL IEEE INDIA CONFERENCE (INDICON-2011): ENGINEERING SUSTAINABLE SOLUTIONS, 2011,
  • [8] Robust Methods of Parameters Estimation for Transient Processes in Electromechanical Systems.
    Shevlyakov, G.L.
    Trudy LPI, 1982, (388): : 67 - 71
  • [9] Improvements for electromechanical oscillation mode estimation via subspace identification methods
    Sheng Ding
    Hongliang Huang
    EURASIP Journal on Advances in Signal Processing, 2015
  • [10] Improvements for electromechanical oscillation mode estimation via subspace identification methods
    Ding, Sheng
    Huang, Hongliang
    EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING, 2015,