A KAM THEOREM FOR THE ELLIPTIC LOWER DIMENSIONAL TORT WITH ONE NORMAL FREQUENCY IN REVERSIBLE SYSTEMS

被引:3
作者
Wang, Xiaocai [1 ]
Xu, Junxiang [2 ]
Zhang, Dongfeng [2 ]
机构
[1] Huaiyin Inst Technol, Fac Math & Phys, Huaian 223003, Jiangsu, Peoples R China
[2] Southeast Univ, Dept Math, Nanjing 210096, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Reversible systems; KAM iteration; lower-dimensional tori; topological degree; INVARIANT TORI; NORMAL-FORM; PERSISTENCE; STABILITY;
D O I
10.3934/dcds.2017092
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider the persistence of elliptic lower dimensional invariant tori with one normal frequency in reversible systems, and prove that if the frequency mapping w(y) is an element of R-n and normal frequency mapping lambda(y) is an element of R satisfy that deg(omega/lambda, O, omega(0)/lambda(0)) not equal 0, where omega(0) = omega(y(0)) and lambda(0) = lambda(y(0)) satisfy Melnikov's non -resonance conditions for some y(0) is an element of O, then the direction of this frequency for the invariant torus persists under small perturbations. Our result is a generalization of X. Wang et al[Persistence of lower dimensional elliptic invariant tori for a class of nearly integrable reversible systems, Discrete and Continuous Dynamical Systems series B, 14 (2010), 1237-1249].
引用
收藏
页码:2141 / 2160
页数:20
相关论文
共 38 条
  • [1] [Anonymous], 2011, P IEEE INT C COMM JU
  • [2] Arnol'd V.I., 1984, Nonlinear and turbulent processes in physics, Vol. 3 (Kiev, V3, P1161
  • [3] Arnold V.I., 2006, Ordinary Differential Equations, V58291st
  • [4] N-dimensional elliptic invariant tori for the planar (N+1)-body problem
    Biasco, L
    Chierchia, L
    Valdinoci, E
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2006, 37 (05) : 1560 - 1588
  • [5] Elliptic two-dimensional invariant tori for the planetary three-body problem
    Biasco, L
    Chierchia, L
    Valdinoci, E
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2003, 170 (02) : 91 - 135
  • [6] Normal linear stability of quasi-periodic tori
    Broer, H. W.
    Hoo, J.
    Naudot, V.
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 232 (02) : 355 - 418
  • [7] Broer H. W., 1996, Quasi-Periodic Motions in Families of Dynamical Systems: Order amidst Chaos
  • [8] The quasi-periodic reversible Hopf bifurcation
    Broer, Henk W.
    Ciocci, M. Cristina
    Hanssmann, Heinz
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2007, 17 (08): : 2605 - 2623
  • [9] Quasi-periodic stability of normally resonant tori
    Broer, Henk W.
    Ciocci, M. Cristina
    Hanssmann, Heinz
    Vanderbauwhede, Andre
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2009, 238 (03) : 309 - 318
  • [10] BROER HW, 1995, J DYNAM DIFFERENTIAL, V7, P191, DOI DOI 10.1007/BF02218818