Generalized Hilbert operators on weighted Bergman spaces

被引:33
|
作者
Angel Pelaez, Jose [1 ]
Rattya, Jouni [2 ]
机构
[1] Univ Malaga, Dept Anal Matemat, E-29071 Malaga, Spain
[2] Univ Eastern Finland, Dept Math & Phys, Joensuu 80101, Finland
关键词
Generalized Hilbert operator; Weighted Bergman space; Muckenhoupt weight; Regular weight; Rapidly increasing weight; ANALYTIC-FUNCTIONS; LP-BEHAVIOR; MATRIX;
D O I
10.1016/j.aim.2013.03.006
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The main purpose of this paper is to study the generalized Hilbert operator H-g(f)(z) = integral(1)(0) f(t)g' (tz) dt acting on the weighted Bergman space A(omega)(p), where the weight function omega belongs to the class R of regular radial weights and satisfies the Muckenhoupt type condition sup(0 <= r<1) (integral(1)(t)(integral(1)(t) omega(s)ds)(-p/p)dt)(p/p') integral(r)(0) (1 - t)(-p) (integral(1)(t) omega(s)ds) dt < infinity. (dagger) If q = p, the condition on g that characterizes the boundedness (or the compactness) of H-g : A(omega)(p) -> A(omega)(q) depends on p only, but the situation is completely different in the case q not equal p in which the inducing weight omega plays a crucial role. The results obtained also reveal a natural connection to the Muckenhoupt type condition (dagger). Indeed, it is shown that the classical Hilbert operator (the case g(z) = log 1/1-z of H-g) is bounded from L-integral t1 omega(s)ds(p), ([0, 1)) (the natural restriction of A(omega)(p) functions defined on [0, 1)) to A(omega)(p) if and only if a) satisfies the condition (l.). On the way to these results decomposition norms for the weighted Bergman space A(omega)(p) are established. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:227 / 267
页数:41
相关论文
共 50 条
  • [41] Generalized Counting Functions and Composition Operators on Weighted Bergman Spaces of Dirichlet Series
    He, Min
    Wang, Maofa
    Chen, Jiale
    ACTA MATHEMATICA SCIENTIA, 2025, 45 (02) : 291 - 309
  • [42] WEIGHTED COMPOSITION OPERATORS FROM BERGMAN SPACES INTO WEIGHTED BLOCH SPACES
    Li, Songxiao
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2005, 20 (01): : 63 - 70
  • [43] Bicomplex Weighted Bergman Spaces and Composition Operators
    Dolkar, Stanzin
    Kumar, Sanjay
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2023, 33 (04)
  • [44] Dynamics of composition operators on weighted Bergman spaces
    Zhang, Liang
    Zhou, Ze-Hua
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2016, 27 (01): : 406 - 418
  • [45] Composition Operators on Weighted Bergman Spaces of Polydisk
    Zahra Saeidikia
    Ali Abkar
    Bulletin of the Iranian Mathematical Society, 2023, 49
  • [46] Radial operators on polyanalytic weighted Bergman spaces
    Moises Barrera-Castelan, Roberto
    Maximenko, Egor A.
    Ramos-Vazquez, Gerardo
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2021, 27 (02):
  • [47] TOEPLITZ-OPERATORS ON WEIGHTED BERGMAN SPACES
    ELIAS, N
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 1988, 11 (03) : 310 - 331
  • [48] Schatten Class Operators on Weighted Bergman Spaces
    Das, Namita
    Jena, Pabitra Kumar
    THAI JOURNAL OF MATHEMATICS, 2012, 10 (02): : 289 - 303
  • [49] Differences of composition operators on weighted Bergman spaces
    Ching-on Lo
    Anthony Wai-keung Loh
    Ricerche di Matematica, 2023, 72 : 815 - 833
  • [50] Weighted composition operators on Bergman spaces Aωp
    Arroussi, Hicham
    MATHEMATISCHE NACHRICHTEN, 2022, 295 (04) : 631 - 656