A simple proof of Bailey's very-well-poised 6ψ6 summation

被引:16
作者
Schlosser, M [1 ]
机构
[1] Ohio State Univ, Dept Math, Columbus, OH 43210 USA
关键词
bilateral basic hypergeometric series; q-series; Ramanujan's 1 psi 1 summation; Dougall's H-2(2) summation; Bailey's 6 psi 6 summation;
D O I
10.1090/S0002-9939-01-06175-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give elementary derivations of some classical summation formulae for bilateral (basic) hypergeometric series. In particular, we apply Gau ss' 2(F)1 summation and elementary series manipulations to give a simple proof of Dougall's H-2(2) summation. Similarly, we apply Rogers' nonterminating (6)phi (5) summation and elementary series manipulations to give a simple proof of Bailey's very-well-poised (6)psi (6) summation. Our method of proof extends M. Jackson's first elementary proof of Ramanujan's (1)psi (1) summation.
引用
收藏
页码:1113 / 1123
页数:11
相关论文
共 27 条
[1]   APPLICATIONS OF BASIC HYPERGEOMETRIC FUNCTIONS [J].
ANDREWS, GE .
SIAM REVIEW, 1974, 16 (04) :441-484
[2]  
ANDREWS GE, 2000, COMMUNICATION JUN
[3]  
Andrews GE, 1999, ENCY MATH ITS APPL, V71
[4]  
[Anonymous], J LONDON MATH SOC
[5]  
[Anonymous], C R ACAD SCI PARIS
[6]  
[Anonymous], 1921, MESSENGER MATH
[7]  
[Anonymous], RAM INT S AN PUN IND
[8]  
[Anonymous], 1978, RAMANUJAN
[9]  
ASKEY R, 1984, P AM MATH SOC, V90, P575, DOI 10.2307/2045033
[10]   VERY WELL POISED 6-PSI-6 [J].
ASKEY, R ;
ISMAIL, MEH .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1979, 77 (02) :218-222