Application of Adaptive Sliding Mode Control for Regenerative Braking Torque Control

被引:45
作者
Fazeli, Amir [1 ]
Zeinali, Meysar [2 ]
Khajepour, Amir [1 ]
机构
[1] Univ Waterloo, Dept Mech Engn, Waterloo, ON N2L 3G1, Canada
[2] Laurentian Univ, Sch Engn, Sudbury, ON P3E 2C6, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Adaptive sliding-mode control (ASMC); air hybrid engines; engine torque control; regenerative braking; FUEL RATIO;
D O I
10.1109/TMECH.2011.2129525
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In air hybrid vehicles, there are two independent braking systems: frictional and regenerative. Since the regenerative braking torque is proportional to the parameters such as tank pressure and engine speed, a controller is needed for the control of the regenerative braking torque generated by internal combustion engine, based on the driver preference. In this work, a nonlinear control approach based on adaptive sliding-mode control (ASMC) is employed to tackle the problem of engine torque control during regenerative mode. To this end, a novel mean value model for a recently proposed cam-based air hybrid engine is derived for the regenerative mode and employed for designing the controller. The adaptive sliding-mode controller incorporates the approximately known inverse dynamic model output of the engine as a model-base component of the controller, and an estimated uncertainty term to compensate for the unmodeled dynamics, external disturbances (e. g., gear shifting), and time-varying system parameters such as tank pressure. The robustness and performance of the controller for this particular application is investigated and compared with that of a high-gain PID controller and a smooth sliding-mode controller numerically and experimentally. The results show that the controller performs remarkably well in terms of the robustness, tracking error convergence, and disturbance attenuation. Chattering effect is also removed by utilizing the ASMC scheme.
引用
收藏
页码:745 / 755
页数:11
相关论文
共 24 条
[1]  
[Anonymous], SAE INT C EXP DETR M
[2]  
[Anonymous], FUELS LUBR M EXH RIO
[3]  
[Anonymous], SAE INT C EXP DETR M
[4]  
[Anonymous], AUTOMOBILE ELECT HDB
[5]  
[Anonymous], SAE INT C EXP DETR M
[6]  
[Anonymous], SAE INT C EXP DETR M
[7]  
[Anonymous], TRENDS MATH INF CTR
[8]  
[Anonymous], [No title captured]
[9]  
[Anonymous], MODERN ELECT HYBRID
[10]  
[Anonymous], SAE INT C EXP DETR M