Robust cubature Kalman filter based on variational Bayesian and transformed posterior sigma points error

被引:30
作者
Cui, Bingbo [1 ]
Wei, Xinhua [1 ]
Chen, Xiyuan [2 ]
Li, Jinyang [1 ]
Wang, Aichen [1 ]
机构
[1] Jiangsu Univ, Minist Educ & Jiangsu Prov, Key Lab Modern Agr Equipment & Technol, Zhenjiang 212013, Jiangsu, Peoples R China
[2] Southeast Univ, Minist Educ, Key Lab Microinertial Instrument & Adv Nav Techno, Nanjing 210069, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Robust cubature Kalman filter; Sigma-point update; Variational Bayesian; Integrated navigation; STATE-SPACE MODELS; PERFORMANCE EVALUATION; MEASUREMENT NOISE; ALGORITHM; GNSS/INS;
D O I
10.1016/j.isatra.2018.11.005
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
An improved robust cubature Kalman filter (RCKF) based on variational Bayesian (VB) and transformed posterior sigma points error is proposed in this paper, which not only retains the robustness of RCKF, but also exhibits adaptivity in the presence of time-varying noise. First, a novel sigma-point update framework with uncertainties reduction is developed by employing the transformed posterior sigma points error. Then the VB is used to estimate the time-varying measurement noise, where the state dependent noise is addressed in the iteratively parameter estimation. The new filter not only reduces the uncertainty on sigma points generation but also accelerates the convergence of VB-based noise estimation. The effectiveness of the proposed filter is verified on integrated navigation, and numerical simulations demonstrate that VB-RCKF outperforms VB-CKF and RCKF. (C) 2018 ISA. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:18 / 28
页数:11
相关论文
共 36 条
[1]   Robust Estimation in Non-Linear State-Space Models With State-Dependent Noise [J].
Agamennoni, Gabriel ;
Nebot, Eduardo M. .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2014, 62 (08) :2165-2175
[2]   Cubature Kalman Filters [J].
Arasaratnam, Ienkaran ;
Haykin, Simon .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2009, 54 (06) :1254-1269
[3]   Adaptive Kalman Filtering by Covariance Sampling [J].
Assa, Akbar ;
Plataniotis, Konstantinos N. .
IEEE SIGNAL PROCESSING LETTERS, 2017, 24 (09) :1288-1292
[4]   Transformed Unscented Kalman Filter [J].
Chang, Lubin ;
Hu, Baiqing ;
Li, An ;
Qin, Fangjun .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2013, 58 (01) :252-257
[5]   Novel hybrid of strong tracking Kalman filter and wavelet neural network for GPS/INS during GPS outages [J].
Chen, Xiyuan ;
Shen, Chong ;
Zhang, Wei-bin ;
Tomizuka, Masayoshi ;
Xu, Yuan ;
Chiu, Kuanlin .
MEASUREMENT, 2013, 46 (10) :3847-3854
[6]   Robust cubature Kalman filter for GNSS/INS with missing observations and colored measurement noise [J].
Cui, Bingbo ;
Chen, Xiyuan ;
Tang, Xihua ;
Huang, Haoqian ;
Liu, Xiao .
ISA TRANSACTIONS, 2018, 72 :138-146
[7]   Improved Cubature Kalman Filter for GNSS/INS Based on Transformation of Posterior Sigma-Points Error [J].
Cui, Bingbo ;
Chen, Xiyuan ;
Tang, Xinhua .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2017, 65 (11) :2975-2987
[8]   Performance analysis of improved iterated cubature Kalman filter and its application to GNSS/INS [J].
Cui, Bingbo ;
Chen, Xiyuan ;
Xu, Yuan ;
Huang, Haoqian ;
Liu, Xiao .
ISA TRANSACTIONS, 2017, 66 :460-468
[9]   Design of measurement difference autocovariance method for estimation of process and measurement noise covariances [J].
Dunik, Jindrich ;
Kost, Oliver ;
Straka, Ondrej .
AUTOMATICA, 2018, 90 :16-24
[10]   Posterior Linearization Filter: Principles and Implementation Using Sigma Points [J].
Garcia-Fernandez, Angel F. ;
Svensson, Lennart ;
Morelande, Mark R. ;
Sarkka, Simo .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2015, 63 (20) :5561-5573