A note on nonlinear elliptic problems with singular potentials

被引:0
作者
Badiale, Marino [1 ]
Rolando, Sergio [1 ]
机构
[1] Univ Turin, Dipartimento Matemat, I-10123 Turin, Italy
关键词
Semilinear elliptic equation; singular potential; radial solution;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We deal with the semi-linear elliptic problem -Delta u + V (vertical bar x vertical bar)u = f (u), u epsilon D-1,D-2(R-N ; R), where the potential V > 0 is measurable, singular at the origin and may also have a continuous set of singularities. The nonlinearity is continuous and has a super-linear power-like behaviour; both sub-critical and super-critical cases are considered. We prove the existence of positive radial solutions. If f is odd, we show that the problem has infinitely many radial solutions. Nonexistence results for particular potentials and nonlinearities are also given.
引用
收藏
页码:1 / 13
页数:13
相关论文
共 50 条
[41]   Singular extremal solutions for supercritical elliptic equations in a ball [J].
Miyamoto, Yasuhito ;
Naito, Yuki .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 265 (07) :2842-2885
[42]   Elliptic equation with a singular potential in a domain with a conic point [J].
B. A. Khudaikuliev .
Mathematical Notes, 2012, 92 :820-829
[43]   Engineering analysis error estimation when removing finite-sized features in nonlinear elliptic problems [J].
Li, Ming ;
Gao, Shuming ;
Martin, Ralph R. .
COMPUTER-AIDED DESIGN, 2013, 45 (02) :361-372
[44]   On the boundedness of solutions to a nonlinear singular oscillator [J].
Anna Capietto ;
Walter Dambrosio ;
Bin Liu .
Zeitschrift für angewandte Mathematik und Physik, 2009, 60
[45]   Resolvent convergence of Sturm—Liouville operators with singular potentials [J].
A. S. Goriunov ;
V. A. Mikhailets .
Mathematical Notes, 2010, 87 :287-292
[46]   SINGULAR POSITIVE RADIAL SOLUTIONS FOR A GENERAL SEMILINEAR ELLIPTIC EQUATION [J].
杨芬 .
Acta Mathematica Scientia, 2012, 32 (06) :2377-2387
[47]   SINGULAR POSITIVE RADIAL SOLUTIONS FOR A GENERAL SEMILINEAR ELLIPTIC EQUATION [J].
Fen, Yang .
ACTA MATHEMATICA SCIENTIA, 2012, 32 (06) :2377-2387
[48]   On uniqueness of positive solutions of semilinear elliptic equations with singular potential [J].
Chaves, M ;
García-Azorero, J .
ADVANCED NONLINEAR STUDIES, 2003, 3 (02) :273-288
[49]   On the Caginalp system with dynamic boundary conditions and singular potentials [J].
L. Cherfils ;
A. Miranville .
Applications of Mathematics, 2009, 54 :89-115
[50]   FRACTIONAL SCHRODINGER EQUATION WITH SINGULAR POTENTIALS OF HIGHER ORDER [J].
Altybay, Arshyn ;
Ruzhansky, Michael ;
Sebih, Mohammed Elamine ;
Tokmagambetov, Niyaz .
REPORTS ON MATHEMATICAL PHYSICS, 2021, 87 (01) :129-144