Detecting stable adsorbates of (1S)-camphor on Cu(111) with Bayesian optimization

被引:20
作者
Jarvi, Jari [1 ]
Rinke, Patrick [1 ]
Todorovic, Milica [1 ]
机构
[1] Aalto Univ, Dept Appl Phys, POB 11100, Espoo 00076, Finland
基金
芬兰科学院;
关键词
Bayesian optimization; camphor; Cu(111); density-functional theory; electronic structure; organic surface adsorbates; physical chemistry; structure search; surface science; ATOMIC-FORCE MICROSCOPY; SURFACE; MOLECULES; SEARCH;
D O I
10.3762/bjnano.11.140
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Identifying the atomic structure of organic-inorganic interfaces is challenging with current research tools. Interpreting the structure of complex molecular adsorbates from microscopy images can be difficult, and using atomistic simulations to find the most stable structures is limited to partial exploration of the potential energy surface due to the high-dimensional phase space. In this study, we present the recently developed Bayesian Optimization Structure Search ( BOSS) method as an efficient solution for identifying the structure of non-planar adsorbates. We apply BOSS with density-functional theory simulations to detect the stable adsorbate structures of (1S)-camphor on the Cu(111) surface. We identify the optimal structure among eight unique types of stable adsorbates, in which camphor chemisorbs via oxygen (global minimum) or physisorbs via hydrocarbons to the Cu(111) surface. This study demonstrates that new cross-disciplinary tools, such as BOSS, facilitate the description of complex surface structures and their properties, and ultimately allow us to tune the functionality of advanced materials.
引用
收藏
页码:1577 / 1589
页数:13
相关论文
共 52 条
[1]   Automated structure discovery in atomic force microscopy [J].
Alldritt, Benjamin ;
Hapala, Prokop ;
Oinonena, Niko ;
Urtev, Fedor ;
Krejci, Ondrej ;
Canova, Filippo Federici ;
Kannala, Juho ;
Schulz, Fabian ;
Liljeroth, Peter ;
Foster, Adam S. .
SCIENCE ADVANCES, 2020, 6 (09)
[2]   Adaptive Strategies for Materials Design using Uncertainties [J].
Balachandran, Prasanna V. ;
Xue, Dezhen ;
Theiler, James ;
Hogden, John ;
Lookman, Turab .
SCIENTIFIC REPORTS, 2016, 6
[3]   Ab initio molecular simulations with numeric atom-centered orbitals [J].
Blum, Volker ;
Gehrke, Ralf ;
Hanke, Felix ;
Havu, Paula ;
Havu, Ville ;
Ren, Xinguo ;
Reuter, Karsten ;
Scheffler, Matthias .
COMPUTER PHYSICS COMMUNICATIONS, 2009, 180 (11) :2175-2196
[4]  
Brochu E, 2010, COMPUT SCI
[5]   A LIMITED MEMORY ALGORITHM FOR BOUND CONSTRAINED OPTIMIZATION [J].
BYRD, RH ;
LU, PH ;
NOCEDAL, J ;
ZHU, CY .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1995, 16 (05) :1190-1208
[6]  
Carr S, 2016, PR MACH LEARN RES, V48
[7]   Bayesian optimization for conformer generation [J].
Chan, Lucian ;
Hutchison, Geoffrey R. ;
Morris, Garrett M. .
JOURNAL OF CHEMINFORMATICS, 2019, 11
[8]   Hybrid Organic-Inorganic Silica Gel Carriers with Controlled Drug-Delivery Properties [J].
Contessotto, Laura ;
Ghedini, Elena ;
Pinna, Francesco ;
Signoretto, Michela ;
Cerrato, Giuseppina ;
Crocella, Valentina .
CHEMISTRY-A EUROPEAN JOURNAL, 2009, 15 (44) :12043-12049
[9]   Local Bayesian optimizer for atomic structures [J].
del Rio, Estefania Garijo ;
Mortensen, Jens Jorgen ;
Jacobsen, Karsten Wedel .
PHYSICAL REVIEW B, 2019, 100 (10)
[10]   Charge Transfer into Organic Thin Films: A Deeper Insight through Machine-Learning-Assisted Structure Search [J].
Egger, Alexander T. ;
Hoermann, Lukas ;
Jeindl, Andreas ;
Scherbela, Michael ;
Obersteiner, Veronika ;
Todorovic, Milica ;
Rinke, Patrick ;
Hofmann, Oliver T. .
ADVANCED SCIENCE, 2020, 7 (15)