Critical points of the symmetric functions of the eigenvalues of the Laplace operator and overdetermined problems

被引:14
作者
Lamberti, Pier Domenico [1 ]
Lanza de Cristoforis, Massimo [1 ]
机构
[1] Univ Padua, Dipartimento Matemat Pura & Applicata, I-35131 Padua, Italy
关键词
Dirichlet and Neumann eigenvalues and eigenfunctions; Laplace operator; overdetermined problems; domain perturbation; special nonlinear operators;
D O I
10.2969/jmsj/1145287100
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the Dirichlet and the Neumann eigenvalue problem for the Laplace operator on a variable nonsmooth domain, and we prove that the elementary symmetric functions of the eigenvalues splitting from a given eigenvalue upon domain deformation have a critical point at a domain with the shape of a ball. Correspondingly, we formulate overdetermined boundary value problems of the type of the Schiffer conjecture.
引用
收藏
页码:231 / 245
页数:15
相关论文
共 15 条
[1]  
[Anonymous], 1999, MATH APPL
[2]  
CHATELAIN T, 1997, ESAIM P, V2, P235
[3]  
Evans L.C., 1998, PARTIAL DIFFERENTIAL
[4]  
Gilbar D., 1983, ELLIPTIC PARTIAL DIF
[5]  
Henry D.B., 1982, TRABALHO MATEMATICA, V192
[6]  
Lamberti PD, 2005, Z ANAL ANWEND, V24, P277
[7]   A global Lipschitz continuity result for a domain-dependent Neumann eigenvalue problem for the Laplace operator [J].
Lamberti, PD ;
Lanza de Cristoforis, M .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2005, 216 (01) :109-133
[8]   An analyticity result for the dependence of multiple eigen-values and eigenspaces of the Laplace operator upon perturbation of the domain [J].
Lamberti, PD ;
Lanza de Cristoforis, M .
GLASGOW MATHEMATICAL JOURNAL, 2002, 44 :29-43
[9]  
LAMBERTI PD, 2003, UNPUB REAL ANAL RESU
[10]  
Lamberti PD., 2004, J NONLINEAR CONVEX A, V5, P19