A multi-step class of iterative methods for nonlinear systems

被引:65
作者
Soleymani, Fazlollah [1 ]
Lotfi, Taher [2 ]
Bakhtiari, Parisa [2 ]
机构
[1] Islamic Azad Univ, Zahedan Branch, Dept Math, Zahedan, Iran
[2] Islamic Azad Univ, Hamedan Branch, Dept Math, Hamadan, Iran
关键词
Nonlinear systems; Matrix; LU factorization; Computational complexity; Nonlinear differential equations; EQUATIONS;
D O I
10.1007/s11590-013-0617-6
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this article, the numerical solution of nonlinear systems using iterative methods are dealt with. Toward this goal, a general class of multi-point iteration methods with various orders is constructed. The error analysis is presented to prove the convergence order. Also, a thorough discussion on the computational complexity of the new iterative methods will be given. The analytical discussion of the paper will finally be upheld through solving some application-oriented problems.
引用
收藏
页码:1001 / 1015
页数:15
相关论文
共 21 条
[1]   A choice of forcing terms in inexact Newton method [J].
An, Heng-Bin ;
Mo, Ze-Yao ;
Liu, Xing-Ping .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2007, 200 (01) :47-60
[2]   A globally convergent Newton-GMRES method for large sparse systems of nonlinear equations [J].
An, Heng-Bin ;
Bai, Zhong-Zhi .
APPLIED NUMERICAL MATHEMATICS, 2007, 57 (03) :235-252
[3]   On finite difference approximation of a matrix-vector product in the Jacobian-free Newton-Krylov method [J].
An, Heng-Bin ;
Wen, Ju ;
Feng, Tao .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 236 (06) :1399-1409
[4]  
[Anonymous], 2007, COMP MATH MATH PHYS+
[5]   High-precision computation: Mathematical physics and dynamics [J].
Bailey, D. H. ;
Barrio, R. ;
Borwein, J. M. .
APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (20) :10106-10121
[6]  
Ben-Israel A., 2003, GEN INVERSES
[7]   A modified Newton-Jarratt's composition [J].
Cordero, Alicia ;
Hueso, Jose L. ;
Martinez, Eulalia ;
Torregrosa, Juan R. .
NUMERICAL ALGORITHMS, 2010, 55 (01) :87-99
[8]   MULTIPLE ZEROS OF NONLINEAR SYSTEMS [J].
Dayton, Barry H. ;
Li, Tien-Yien ;
Zeng, Zhonggang .
MATHEMATICS OF COMPUTATION, 2011, 80 (276) :2143-2168
[9]   Solving systems of nonlinear equations with continuous GRASP [J].
Hirsch, Michael J. ;
Pardalos, Panos M. ;
Resende, Mauricio G. C. .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2009, 10 (04) :2000-2006
[10]   SOME 4TH ORDER MULTIPOINT ITERATIVE METHODS FOR EQUATIONS [J].
JARRATT, P .
MATHEMATICS OF COMPUTATION, 1966, 20 (95) :434-&