Vector quasi-hemivariational inequalities and discontinuous elliptic systems

被引:7
作者
Carl, S [1 ]
Naniewicz, Z
机构
[1] Univ Halle Wittenberg, Fachbereich Math Informat, Inst Anal, D-06099 Halle, Germany
[2] Cardinal Stefen Wyszynski Univ, Dept Math & Nat Sci, Coll Sci, PL-01815 Warsaw, Poland
关键词
hemivariational inequality; trapping regions;
D O I
10.1007/s10898-005-1651-4
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We develop an existence theory for hemivariational inequalities in vector-valued function spaces which involve pseudomonotone operators. The obtained abstract result is used to study quasilinear elliptic systems whose lower order coupling vector field depends discontinuously upon the solution vector. We provide conditions that allow the identification of regions of existence of solutions for such systems, so called trapping regions.
引用
收藏
页码:609 / 634
页数:26
相关论文
共 25 条
[1]  
[Anonymous], 2000, NONLINEAR DIFFERENTI
[2]  
Aubin J.-P., 1984, Differential Inclusions
[3]   NON-LINEAR EQUATIONS AND INEQUATIONS IN DUAL VECTORIAL SPACES [J].
BREZIS, H .
ANNALES DE L INSTITUT FOURIER, 1968, 18 (01) :115-&
[4]  
Browder FE., 1972, J. Funct. Anal, V11, P251, DOI [10.1016/0022-1236(72)90070-5, DOI 10.1016/0022-1236(72)90070-5]
[5]   Extremal solutions of quasilinear parabolic inclusions with generalized Clarke's gradient [J].
Carl, S ;
Motreanu, D .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2003, 191 (01) :206-233
[6]   Trapping region for discontinuous quasilinear elliptic systems of mixed monotone type [J].
Carl, S ;
Jerome, JW .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2002, 51 (05) :843-863
[7]   MONOTONE ENCLOSURE FOR ELLIPTIC AND PARABOLIC-SYSTEMS WITH NONMONOTONE NONLINEARITIES [J].
CARL, S ;
GROSSMANN, C .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1990, 151 (01) :190-202
[8]   VARIATIONAL-METHODS FOR NON-DIFFERENTIABLE FUNCTIONALS AND THEIR APPLICATIONS TO PARTIAL-DIFFERENTIAL EQUATIONS [J].
CHANG, KC .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1981, 80 (01) :102-129
[9]  
Clarke FH, 1983, OPTIMIZATION NONSMOO
[10]  
Ekeland I., 1976, CONVEX ANAL VARIATIO