Draft genome sequence of the male-killing Wolbachia strain wBol1 reveals recent horizontal gene transfers from diverse sources

被引:58
作者
Duplouy, Anne [1 ,2 ]
Iturbe-Ormaetxe, Inaki [1 ,3 ]
Beatson, Scott A. [4 ]
Szubert, Jan M. [4 ]
Brownlie, Jeremy C. [1 ,5 ]
McMeniman, Conor J. [1 ,6 ]
McGraw, Elizabeth A. [1 ,3 ]
Hurst, Gregory D. D. [7 ]
Charlat, Sylvain [8 ]
O'Neill, Scott L. [1 ,3 ,9 ]
Woolfit, Megan [1 ,3 ]
机构
[1] Univ Queensland, Sch Biol Sci, Brisbane, Qld 4072, Australia
[2] Univ Helsinki, Metapopulat Res Grp, FIN-00014 Helsinki, Finland
[3] Monash Univ, Sch Biol Sci, Clayton, Vic 3800, Australia
[4] Univ Queensland, Sch Chem & Mol Biosci, Brisbane, Qld 4072, Australia
[5] Griffith Univ, Sch Biomol & Phys Sci, Brisbane, Qld 4111, Australia
[6] Rockefeller Univ, Lab Neurogenet & Behav, New York, NY 10065 USA
[7] Univ Liverpool, Inst Integrat Biol, Liverpool L69 7ZB, Merseyside, England
[8] UCB Lyon 1, Lab Biometrie & Biol Evolut, CNRS, UMR 5558, F-69622 Villeurbanne, France
[9] Univ Queensland, Inst Mol Biosci, Brisbane, Qld 4072, Australia
基金
美国国家科学基金会; 澳大利亚研究理事会; 英国生物技术与生命科学研究理事会;
关键词
DOMAIN-ENCODING GENES; ARSENOPHONUS-NASONIAE; ENDOSYMBIONT; EVOLUTION; IDENTIFICATION; BACTERIUM; INFECTIONS; EXPRESSION; PHYLOGENY; ALIGNMENT;
D O I
10.1186/1471-2164-14-20
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: The endosymbiont Wolbachia pipientis causes diverse and sometimes dramatic phenotypes in its invertebrate hosts. Four Wolbachia strains sequenced to date indicate that the constitution of the genome is dynamic, but these strains are quite divergent and do not allow resolution of genome diversification over shorter time periods. We have sequenced the genome of the strain wBol1-b, found in the butterfly Hypolimnas bolina, which kills the male offspring of infected hosts during embyronic development and is closely related to the non-male-killing strain wPip from Culex pipiens. Results: The genomes of wBol1-b and wPip are similar in genomic organisation, sequence and gene content, but show substantial differences at some rapidly evolving regions of the genome, primarily associated with prophage and repetitive elements. We identified 44 genes in wBol1-b that do not have homologs in any previously sequenced strains, indicating that Wolbachia's non-core genome diversifies rapidly. These wBol1-b specific genes include a number that have been recently horizontally transferred from phylogenetically distant bacterial taxa. We further report a second possible case of horizontal gene transfer from a eukaryote into Wolbachia. Conclusions: Our analyses support the developing view that many endosymbiotic genomes are highly dynamic, and are exposed and receptive to exogenous genetic material from a wide range of sources. These data also suggest either that this bacterial species is particularly permissive for eukaryote-to-prokaryote gene transfers, or that these transfers may be more common than previously believed. The wBol1-b-specific genes we have identified provide candidates for further investigations of the genomic bases of phenotypic differences between closely-related Wolbachia strains.
引用
收藏
页数:13
相关论文
共 75 条
[1]   BASIC LOCAL ALIGNMENT SEARCH TOOL [J].
ALTSCHUL, SF ;
GISH, W ;
MILLER, W ;
MYERS, EW ;
LIPMAN, DJ .
JOURNAL OF MOLECULAR BIOLOGY, 1990, 215 (03) :403-410
[2]   Detection and Characterization of Wolbachia Infections in Natural Populations of Aphids: Is the Hidden Diversity Fully Unraveled? [J].
Augustinos, Antonis A. ;
Santos-Garcia, Diego ;
Dionyssopoulou, Eva ;
Moreira, Marta ;
Papapanagiotou, Aristeidis ;
Scarvelakis, Marios ;
Doudoumis, Vangelis ;
Ramos, Silvia ;
Aguiar, Antonio F. ;
Borges, Paulo A. V. ;
Khadem, Manhaz ;
Latorre, Amparo ;
Tsiamis, George ;
Bourtzis, Kostas .
PLOS ONE, 2011, 6 (12)
[3]   Multilocus sequence typing system for the endosymbiont Wolbachia pipientis [J].
Baldo, Laura ;
Hotopp, Julie C. Dunning ;
Jolley, Keith A. ;
Bordenstein, Seth R. ;
Biber, Sarah A. ;
Choudhury, Rhitoban Ray ;
Hayashi, Cheryl ;
Maiden, Martin C. J. ;
Tettelin, Herve ;
Werren, John H. .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2006, 72 (11) :7098-7110
[4]   Phylogeny of Wolbachia in filarial nematodes [J].
Bandi, C ;
Anderson, TJC ;
Genchi, C ;
Blaxter, ML .
PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 1998, 265 (1413) :2407-2413
[5]   Population genomics:: Whole-genome analysis of polymorphism and divergence in Drosophila simulans [J].
Begun, David J. ;
Holloway, Alisha K. ;
Stevens, Kristian ;
Hillier, LaDeana W. ;
Poh, Yu-Ping ;
Hahn, Matthew W. ;
Nista, Phillip M. ;
Jones, Corbin D. ;
Kern, Andrew D. ;
Dewey, Colin N. ;
Pachter, Lior ;
Myers, Eugene ;
Langley, Charles H. .
PLOS BIOLOGY, 2007, 5 (11) :2534-2559
[6]   The pathology of embryo death caused by the male-killing Spiroplasma bacterium in Drosophila nebulosa [J].
Bentley, Joanna K. ;
Veneti, Zoe ;
Heraty, Joseph ;
Hurst, Gregory D. D. .
BMC BIOLOGY, 2007, 5 (1)
[7]   Lateral gene transfer between obligate intracellular bacteria:: Evidence from the Rickettsia massiliae genome [J].
Blanc, Guillaume ;
Ogata, Hiroyuki ;
Robert, Catherine ;
Audic, Stephane ;
Claverie, Jean-Michel ;
Raoult, Didier .
GENOME RESEARCH, 2007, 17 (11) :1657-1664
[8]   Bacteriophage flux in endosymbionts (Wolbachia):: Infection frequency, lateral transfer, and recombination rates [J].
Bordenstein, SR ;
Wernegreen, JJ .
MOLECULAR BIOLOGY AND EVOLUTION, 2004, 21 (10) :1981-1991
[9]   Evidence for Metabolic Provisioning by a Common Invertebrate Endosymbiont, Wolbachia pipientis, during Periods of Nutritional Stress [J].
Brownlie, Jeremy C. ;
Cass, Bodil N. ;
Riegler, Markus ;
Witsenburg, Joris J. ;
Iturbe-Ormaetxe, Inaki ;
McGraw, Elizabeth A. ;
O'Neill, Scott L. .
PLOS PATHOGENS, 2009, 5 (04)
[10]   Neighbor-Net: An agglomerative method for the construction of phylogenetic networks [J].
Bryant, D ;
Moulton, V .
MOLECULAR BIOLOGY AND EVOLUTION, 2004, 21 (02) :255-265