Chromatin accessibility: methods, mechanisms, and biological insights

被引:56
作者
Mansisidor, Andres R. [1 ]
Risca, Viviana I. I. [1 ]
机构
[1] Rockefeller Univ, Lab Genome Architecture & Dynam, Box 176,1230 York Ave, New York, NY 10065 USA
关键词
Accessibility; ATAC-seq; chromatin; compaction; HP1; heterochromatin; linker histones; MNase-seq; phase separation; transcription; TRANSCRIPTION FACTOR-BINDING; ZYGOTIC GENOME ACTIVATION; HISTONE H3K9 METHYLATION; EMBRYONIC STEM-CELLS; REPRESSIVE COMPLEX 2; PHASE-SEPARATION; DNA-REPLICATION; SACCHAROMYCES-CEREVISIAE; NUCLEOSOME DYNAMICS; LINKER HISTONES;
D O I
10.1080/19491034.2022.2143106
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Access to DNA is a prerequisite to the execution of essential cellular processes that include transcription, replication, chromosomal segregation, and DNA repair. How the proteins that regulate these processes function in the context of chromatin and its dynamic architectures is an intensive field of study. Over the past decade, genome-wide assays and new imaging approaches have enabled a greater understanding of how access to the genome is regulated by nucleosomes and associated proteins. Additional mechanisms that may control DNA accessibility in vivo include chromatin compaction and phase separation - processes that are beginning to be understood. Here, we review the ongoing development of accessibility measurements, we summarize the different molecular and structural mechanisms that shape the accessibility landscape, and we detail the many important biological functions that are linked to chromatin accessibility.
引用
收藏
页码:236 / 276
页数:41
相关论文
共 392 条
[1]   Massively multiplex single-molecule oligonucleosome footprinting [J].
Abdulhay, Nour J. ;
McNally, Colin P. ;
Hsieh, Laura J. ;
Kasinathan, Sivakanthan ;
Keith, Aidan ;
Estes, Laurel S. ;
Karimzadeh, Mehran ;
Underwood, Jason G. ;
Goodarzi, Hani ;
Narlikar, Geeta J. ;
Ramani, Vijay .
ELIFE, 2020, 9
[2]   Systematic evaluation of chromosome conformation capture assays [J].
Akgol Oksuz, Betul ;
Yang, Liyan ;
Abraham, Sameer ;
Venev, Sergey V. ;
Krietenstein, Nils ;
Parsi, Krishna Mohan ;
Ozadam, Hakan ;
Oomen, Marlies E. ;
Nand, Ankita ;
Mao, Hui ;
Genga, Ryan M. J. ;
Maehr, Rene ;
Rando, Oliver J. ;
Mirny, Leonid A. ;
Gibcus, Johan H. ;
Dekker, Job .
NATURE METHODS, 2021, 18 (09) :1046-+
[3]   The molecular mechanism of mitotic inhibition of TFIIH is mediated by phosphorylation of CDK7 [J].
Akoulitchev, S ;
Reinberg, D .
GENES & DEVELOPMENT, 1998, 12 (22) :3541-3550
[4]   Division of Labor between the Chromodomains of HP1 and Suv39 Methylase Enables Coordination of Heterochromatin Spread [J].
Al-Sady, Bassem ;
Madhani, Hiten D. ;
Narlikar, Geeta J. .
MOLECULAR CELL, 2013, 51 (01) :80-91
[5]   Translational and rotational settings of H2A.Z nucleosomes across the Saccharomyces cerevisiae genome [J].
Albert, Istvan ;
Mavrich, Travis N. ;
Tomsho, Lynn P. ;
Qi, Ji ;
Zanton, Sara J. ;
Schuster, Stephan C. ;
Pugh, B. Franklin .
NATURE, 2007, 446 (7135) :572-576
[6]  
Alberts B., 2007, MOL BIOL CELL
[7]   Recognition and Repair of Chemically Heterogeneous Structures at DNA Ends [J].
Andres, Sara N. ;
Schellenberg, Matthew J. ;
Wallace, Bret D. ;
Tumbale, Percy ;
Williams, R. Scott .
ENVIRONMENTAL AND MOLECULAR MUTAGENESIS, 2015, 56 (01) :1-21
[8]   Regulation of gene transcription by Polycomb proteins [J].
Aranda, Sergi ;
Mas, Gloria ;
Di Croce, Luciano .
SCIENCE ADVANCES, 2015, 1 (11)
[9]   Inferring the physical properties of yeast chromatin through Bayesian analysis of whole nucleus simulations [J].
Arbona, Jean-Michel ;
Herbert, Sebastien ;
Fabre, Emmanuelle ;
Zimmer, Christophe .
GENOME BIOLOGY, 2017, 18
[10]   Role of histone tails in chromatin folding revealed by a mesoscopic oligonucleosome model [J].
Arya, Gaurav ;
Schlick, Tamar .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (44) :16236-16241