Vibrio species naturally reside in the aquatic environment and a major metabolite in this habitat is the chitinous exoskeletons of crustacean zooplankton. In addition to serving as a nutrient, chitin-derived oligosaccharides also induce natural genetic competence in many Vibrio spp., a physiological state in which bacteria take up DNA from the extracellular environment and can integrate it into their chromosome by homologous recombination. Another inducing cue required for competence are quorum-sensing autoinducers. The alternative sigma factor RpoS is critical for natural transformation in Vibrio cholerae, and it was previously presumed to exert this effect through regulation of quorum sensing. Here, we show that RpoS does not affect quorum sensing-dependent regulation of competence. Instead, we show that an rpoS mutant has reduced chitinase activity, which is required to liberate the soluble chitin oligosaccharides that serve as an inducing cue for competence. Consistent with this, we demonstrate that RpoS is required for growth of V. cholerae on insoluble chitin. RpoS also regulates the mucosal escape response in pathogenic strains of V. cholerae. Thus, in addition to promoting egress from its human host, RpoS may also prime this pathogen for successful reentry into the aquatic environment.