The Accuracy of Dominance Analysis as a Metric to Assess Relative Importance: The Joint Impact of Sampling Error Variance and Measurement Unreliability
被引:55
作者:
Braun, Michael T.
论文数: 0引用数: 0
h-index: 0
机构:
Univ S Florida, Dept Psychol, 4202 East Fowler Ave,PCD 4118G, Tampa, FL 33620 USAUniv S Florida, Dept Psychol, 4202 East Fowler Ave,PCD 4118G, Tampa, FL 33620 USA
Braun, Michael T.
[1
]
Converse, Patrick D.
论文数: 0引用数: 0
h-index: 0
机构:
Florida Inst Technol, Sch Psychol, Melbourne, FL 32901 USAUniv S Florida, Dept Psychol, 4202 East Fowler Ave,PCD 4118G, Tampa, FL 33620 USA
Converse, Patrick D.
[2
]
Oswald, Frederick L.
论文数: 0引用数: 0
h-index: 0
机构:
Rice Univ, Dept Psychol, Houston, TX 77251 USAUniv S Florida, Dept Psychol, 4202 East Fowler Ave,PCD 4118G, Tampa, FL 33620 USA
Oswald, Frederick L.
[3
]
机构:
[1] Univ S Florida, Dept Psychol, 4202 East Fowler Ave,PCD 4118G, Tampa, FL 33620 USA
[2] Florida Inst Technol, Sch Psychol, Melbourne, FL 32901 USA
[3] Rice Univ, Dept Psychol, Houston, TX 77251 USA
relative weight analysis;
dominance analysis;
predictor importance;
multiple regression;
Monte Carlo simulation;
COMPARING PREDICTORS;
MULTIPLE-REGRESSION;
PSYCHOLOGICAL-RESEARCH;
LINEAR-REGRESSION;
WEIGHTS;
MODELS;
RELIABILITY;
D O I:
10.1037/apl0000361
中图分类号:
B849 [应用心理学];
学科分类号:
040203 ;
摘要:
Dominance analysis (DA) has been established as a useful tool for practitioners and researchers to identify the relative importance of predictors in a linear regression. This article examines the joint impact of two common and pervasive artifacts-sampling error variance and measurement unreliability-on the accuracy of DA. We present Monte Carlo simulations that detail the decrease in the accuracy of DA in the presence of these artifacts, highlighting the practical extent of the inferential mistakes that can be made. Then, we detail and provide a user-friendly program in R (R Core Team, 2017) for estimating the effects of sampling error variance and unreliability on DA. Finally, by way of a detailed example, we provide specific recommendations for how researchers and practitioners should more appropriately interpret and report results of DA.