Symmetry methods in mathematical modeling of Aedes aegypti dispersal dynamics

被引:20
作者
Freire, Igor Leite [1 ]
Torrisi, Mariano [2 ]
机构
[1] Univ Fed Abc, Ctr Matemat Comp & Cognicao, BR-09210170 Santo Andre, SP, Brazil
[2] Univ Catania, Dipartimento Matemat & Informat, I-95125 Catania, Italy
基金
巴西圣保罗研究基金会;
关键词
Reaction-diffusion system; Model for population dynamics; Lie symmetries; Invariant solutions; DENGUE;
D O I
10.1016/j.nonrwa.2012.09.018
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A model of Aedes aegypti, the main vector of the yellow fever, is considered. The Lie point symmetries are found and some classes of exact solutions are shown. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1300 / 1307
页数:8
相关论文
共 26 条
[1]  
Ames W.F., 1991, INT J NONLIN MECH, V26, P167
[2]  
[Anonymous], [No title captured]
[3]   Analytic model for ring pattern formation by bacterial swarmers [J].
Arouh, S .
PHYSICAL REVIEW E, 2001, 63 (03) :031908-031908
[4]   Eco-bio-social determinants of dengue vector breeding: a multicountry study in urban and periurban Asia [J].
Arunachalam, Natarajan ;
Tana, Susilowati ;
Espino, Fe ;
Kittayapong, Pattamaporn ;
Abeyewickreme, Wimal ;
Wai, Khin Thet ;
Tyagi, Brij Kishore ;
Kroeger, Axel ;
Sommerfeld, Johannes ;
Petzold, Max .
BULLETIN OF THE WORLD HEALTH ORGANIZATION, 2010, 88 (03) :173-184
[5]  
Bluman GW., 1989, Symmetries and Differential Equations, DOI DOI 10.1007/978-1-4757-4307-4
[6]  
Cardile V., 2005, P 10 INT C MODERN GR, P32
[7]   Theory of periodic swarming of bacteria:: Application to Proteus mirabilis -: art. no. 031915 [J].
Czirók, A ;
Matsushita, M ;
Vicsek, T .
PHYSICAL REVIEW E, 2001, 63 (03)
[8]   SIMILARITY ANALYSIS AND NONLINEAR WAVE-PROPAGATION [J].
DONATO, A .
INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 1987, 22 (04) :307-314
[9]  
Dresner L., 1983, SIMILARITY SOLUTIONS
[10]   Kinetic model of Proteus mirabilis swarm colony development [J].
Esipov, SE ;
Shapiro, JA .
JOURNAL OF MATHEMATICAL BIOLOGY, 1998, 36 (03) :249-268