Strictly Linear Light Cones in Long-Range Interacting Systems of Arbitrary Dimensions

被引:83
作者
Kuwahara, Tomotaka [1 ,2 ]
Saito, Keiji [3 ]
机构
[1] RIKEN, Math Sci Team, Ctr Adv Intelligence Project AIP, Chuo Ku, 1-4-1 Nihonbashi, Tokyo 1030027, Japan
[2] RIKEN, Interdisciplinary Theoret & Math Sci Program iTHE, 2-1 Hirosawa, Wako, Saitama 3510198, Japan
[3] Keio Univ, Dept Phys, Yokohama, Kanagawa 2238522, Japan
关键词
LIEB-ROBINSON BOUNDS; MANY-BODY DYNAMICS; QUANTUM; PROPAGATION; FRUSTRATION; STABILITY;
D O I
10.1103/PhysRevX.10.031010
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In locally interacting quantum many-body systems, the velocity of information propagation is finitely hounded, and a linear light cone can be defined. Outside the light cone, the amount of information rapidly decays with distance. When systems have long-range interactions, it is highly nontrivial whether such a linear light cone exists. Herein, we consider generic long-range interacting systems with decaying interactions, such as R-alpha with distance R. We prove the existence of the linear light cone for alpha > 2D + 1 (D, the spatial dimension), where we obtain the Lieb-Robinson bound as parallel to[O-i, O-j]parallel to less than or similar to t(2D+1) (R - (v) over bart)(-alpha) with (v) over bar = O(1) for two arbitrary operators O-i and Oj separated by a distance R. Moreover, we provide an explicit quantum-state transfer protocol that achieves the above bound up to a constant coefficient and violates the linear light cone for alpha < 2D + 1. In the regime of alpha > 2D + 1, our result characterizes the best general constraints on the information spreading.
引用
收藏
页数:12
相关论文
共 116 条
[1]   Bose-Einstein Condensation of Erbium [J].
Aikawa, K. ;
Frisch, A. ;
Mark, M. ;
Baier, S. ;
Rietzler, A. ;
Grimm, R. ;
Ferlaino, F. .
PHYSICAL REVIEW LETTERS, 2012, 108 (21)
[2]   Open-system dynamics of entanglement: a key issues review [J].
Aolita, Leandro ;
de Melo, Fernando ;
Davidovich, Luiz .
REPORTS ON PROGRESS IN PHYSICS, 2015, 78 (04)
[3]   Quasilocality and Efficient Simulation of Markovian Quantum Dynamics [J].
Barthel, Thomas ;
Kliesch, Martin .
PHYSICAL REVIEW LETTERS, 2012, 108 (23)
[4]   Observation of ultralong-range Rydberg molecules [J].
Bendkowsky, Vera ;
Butscher, Bjoern ;
Nipper, Johannes ;
Shaffer, James P. ;
Loew, Robert ;
Pfau, Tilman .
NATURE, 2009, 458 (7241) :1005-U76
[5]   Probing many-body dynamics on a 51-atom quantum simulator [J].
Bernien, Hannes ;
Schwartz, Sylvain ;
Keesling, Alexander ;
Levine, Harry ;
Omran, Ahmed ;
Pichler, Hannes ;
Choi, Soonwon ;
Zibrov, Alexander S. ;
Endres, Manuel ;
Greiner, Markus ;
Vuletic, Vladan ;
Lukin, Mikhail D. .
NATURE, 2017, 551 (7682) :579-+
[6]   Light-Cone and Diffusive Propagation of Correlations in a Many-Body Dissipative System [J].
Bernier, Jean-Sebastien ;
Tan, Ryan ;
Bonnes, Lars ;
Guo, Chu ;
Poletti, Dario ;
Kollath, Corinna .
PHYSICAL REVIEW LETTERS, 2018, 120 (02)
[7]   Many-body physics with ultracold gases [J].
Bloch, Immanuel ;
Dalibard, Jean ;
Zwerger, Wilhelm .
REVIEWS OF MODERN PHYSICS, 2008, 80 (03) :885-964
[8]   "Light-Cone" Dynamics After Quantum Quenches in Spin Chains [J].
Bonnes, Lars ;
Essler, Fabian H. L. ;
Lauchli, Andreas M. .
PHYSICAL REVIEW LETTERS, 2014, 113 (18)
[9]   Area law for fixed points of rapidly mixing dissipative quantum systems [J].
Brandao, Fernando G. S. L. ;
Cubitt, Toby S. ;
Lucia, Angelo ;
Michalakis, Spyridon ;
Perez-Garcia, David .
JOURNAL OF MATHEMATICAL PHYSICS, 2015, 56 (10)
[10]   Lieb-robinson bounds and the generation of correlations and topological quantum order [J].
Bravyi, S. ;
Hastings, M. B. ;
Verstraete, F. .
PHYSICAL REVIEW LETTERS, 2006, 97 (05)