Sustainable municipal solid waste incineration fly ash (MSWIFA) alkali-activated materials in construction: Fabrication and performance

被引:9
|
作者
Dong, Peng [1 ]
Liu, Jingyi [1 ]
Wang, Huiru [1 ]
Yuan, Hongyan [1 ]
Wang, Quan [1 ,2 ]
机构
[1] Southern Univ Sci & Technol, Shenzhen, Guangdong, Peoples R China
[2] Shantou Univ, Shantou, Guangdong, Peoples R China
来源
NANOTECHNOLOGIES IN CONSTRUCTION-A SCIENTIFIC INTERNET-JOURNAL | 2022年 / 14卷 / 01期
关键词
Municipal solid waste fly ash; Alkali-activation; Mineral analysis; Morphography; Compression strength; Toxicity leaching; BOTTOM ASH; NANOTECHNOLOGIES; INVENTIONS; METAKAOLIN;
D O I
10.15828/2075-8545-2022-14-1-43-52
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Introduction. Recent years have seen a pressing need to dispose of municipal solid waste due to rapid urbanization. The municipal solid waste incineration fly ash (MSWIFA) produced from solid waste incineration power plant exhibits pozzolanic properties and poses concern of toxicity leaching when used directly as building materials. This paper presents an alkali-activation method to produce sustainable alkali-activated MSWIFA materials (AAFMs) with various MSWIFA dosages and investigate the corresponding fabrication and performance. Materials and Methods. Composited alkali activators activate the MSWIFA with constant alkalinity of 5% and the molar ratio of Si/Na = 0.86. The resulting geopolymers' bulk densities, mineral composites, morphology, and compression strength are thoroughly examined. Results and discussions. Results show that the use of MSWIFA may lead to more loose structures because the bubbles are generated from metallic aluminum and alkali activators. Additionally, the production of multiple crystals also accounts for increasing porosity. The generated multi-crystals such as Sylvite, Halite, Hydrocalumite, Calcium Hydroxide, and Ettringite are further detected from the morphology and mineral analysis. Furthermore, compression tests and toxicity characteristic leaching procedures (TCLP) are conducted to investigate the mechanical performance and heavy metals solidification performance of AAFMs, with an optimal compression strength of 19.99MPa at 28 days for AAFM-10 while toxicity leaching is subject to regularity limits. Conclusions. This study shows that great potential of using the alkali-activation method to recycle hazardous municipal solid fly ash into construction materials with both ecological safety and high performance.
引用
收藏
页码:43 / 52
页数:10
相关论文
共 50 条
  • [21] Strategic utilization of municipal solid waste incineration bottom ash for the synthesis of lightweight aerated alkali-activated materials
    Zhu, Weiping
    Teoh, Peng Jie
    Liu, Yiquan
    Chen, Zhitao
    Yang, En-Hua
    JOURNAL OF CLEANER PRODUCTION, 2019, 235 : 603 - 612
  • [22] Solidification and Stabilization of Heavy Metals in Municipal Solid Waste Incineration Fly Ash Using Nanoalumina by Alkali-Activated Treatment
    Wang, Baomin
    Li, Tianru
    Zhang, Xiong
    Han, Xiao
    Xing, Yunqing
    Fan, Chengcheng
    Liu, Ze
    JOURNAL OF MATERIALS IN CIVIL ENGINEERING, 2024, 36 (02)
  • [23] The performance and microstructure of alkali-activated artificial aggregates prepared from municipal solid waste incineration bottom ash
    Liu, Jun
    Niu, Renjie
    Hu, Junjie
    Ren, Yuanrui
    Zhang, Weizhuo
    Liu, Guang
    Li, Zhenlin
    Xing, Feng
    Ren, Jie
    CONSTRUCTION AND BUILDING MATERIALS, 2023, 403
  • [24] Solidification/stabilization of municipal solid waste incineration fly ash using uncalcined coal gangue-based alkali-activated cementitious materials
    Zhao, Shujie
    Muhammad, Faheem
    Yu, Lin
    Xia, Ming
    Huang, Xiao
    Jiao, Binquan
    Lu, Ning
    Li, Dongwei
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2019, 26 (25) : 25609 - 25620
  • [25] Manufacture of alkali-activated cementitious materials using municipal solid waste incineration (MSWI) ash: Immobilization of heavy metals in MSWI fly ash by MSWI bottom ash
    Liu, Jun
    Xie, Guangming
    Wang, Zhengdong
    Zeng, Canrong
    Fan, Xu
    Li, Zhenlin
    Ren, Jie
    Xing, Feng
    Zhang, Weizhuo
    CONSTRUCTION AND BUILDING MATERIALS, 2023, 392
  • [26] Municipal Solid Waste Incineration Bottom Ash as Sole Precursor in the Alkali-Activated Binder Formulation
    Maldonado-Alameda, Alex
    Giro-Paloma, Jessica
    Alfocea-Roig, Anna
    Formosa, Joan
    Maria Chimenos, Josep
    APPLIED SCIENCES-BASEL, 2020, 10 (12):
  • [27] Alkali-Activated Binder of Municipal Solid Waste Incineration Bottom Ash at Lower pH Levels
    Tamosaitis, Gintautas
    Vaiciukyniene, Danute
    MATERIALS, 2025, 18 (05)
  • [28] Alkali-activated binders based on the coarse fraction of municipal solid waste incineration bottom ash
    Maldonado-Alameda, Alex
    Giro-Paloma, Jessica
    Manosa, Jofre
    Formosa, Joan
    Chimenos, Josep Maria
    BOLETIN DE LA SOCIEDAD ESPANOLA DE CERAMICA Y VIDRIO, 2022, 61 (04): : 313 - 324
  • [29] Utilization of municipal solid waste incineration fly ash as construction materials based on geopolymerization
    Chen, Yueheng
    Zhao, Ming
    Lv, Yi
    Ting, Zhao Jia
    Zhao, Sheng
    Liu, Zibiao
    Zhang, Xiang
    Yang, Yuanda
    You, Yan
    Yuan, Wenyi
    RESOURCES CONSERVATION & RECYCLING ADVANCES, 2023, 19
  • [30] 3D-printed polymeric lattice-enhanced sustainable municipal solid waste incineration fly ash alkali-activated cementitious composites
    Dong, Peng
    Ding, Weijian
    Yuan, Hongyan
    Wang, Quan
    DEVELOPMENTS IN THE BUILT ENVIRONMENT, 2022, 12