Fully-automatic segmentation of the ciliary muscle using anterior segment optical coherence tomography images

被引:2
作者
Goyanes, Elena [1 ,2 ]
de Moura, Joaquim [1 ,2 ]
Novo, Jorge [1 ,2 ]
Fernandez-Vigo, Jose Ignacio [3 ,5 ]
Fernandez-Vigo, Jose Angel [4 ,5 ]
Ortega, Marcos [1 ,2 ]
机构
[1] Univ A Coruna, Ctr Invest CITIC, La Coruna, Spain
[2] Univ A Coruna, Inst Invest Biomed Coruna INIBIC, VARPA Res Grp, La Coruna, Spain
[3] Hosp Clin San Carlos, Inst Invest Sanitaria IdISSC, Dept Ophthalmol, Madrid, Spain
[4] Univ Extremadura, Dept Ophthalmol, Badajoz, Spain
[5] Ctr Int Oftalmol Avanzada, Madrid, Spain
来源
2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN) | 2022年
关键词
CAD system; AS-OCT; Ciliary Muscle; Segmentation; Deep Learning; AQUEOUS-HUMOR DYNAMICS; ACCOMMODATION;
D O I
10.1109/IJCNN55064.2022.9892316
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The study of the ciliary muscle represents a fundamental step in the diagnosis and treatment of many high-incidence diseases, such as glaucoma or myopia. Currently, Anterior Segment Optical Coherence Tomography (AS-OCT) is widely used by clinicians to analyse the morphological changes that affect this important ocular structure. AS-OCT is a non-invasive imaging technique that produces high-resolution cross-sectional images, allowing a precise visualization of the main ocular tissues of the anterior segment of the eye. In this work, we propose a novel methodology for the ciliary muscle segmentation using AS-OCT images, an emerging ophthalmic imaging technology with great potential to support early diagnosis of relevant ocular conditions. For this purpose, we have analysed the performance of the U-Net architecture with two different encoders (ResNet-18 and ResNet-34) combined with a transfer learning-based approach. The validation of the proposed system was performed through different and representative experiments, using an AS-OCT dataset that was specifically designed for this work. The results demonstrated that the proposed system is robust and reliable, achieving an average Precision of 0.8902 +/- 0.0815, an average Recall of 0.8237 +/- 0.1239, an average Accuracy of 0.9961 +/- 0.0021, an average Jaccard of 0.7431 +/- 0.1116 and an average Dice of 0.8445 +/- 0.0870. These results demonstrate that the proposed method has a satisfactory performance that can help the clinicians to make a more accurate diagnosis and proceed with appropriate treatments of different diseases of interest.
引用
收藏
页数:8
相关论文
共 50 条
[41]   Prediction of keratoconus progression using deep learning of anterior segment optical coherence tomography maps [J].
Kamiya, Kazutaka ;
Ayatsuka, Yuji ;
Kato, Yudai ;
Shoji, Nobuyuki ;
Miyai, Takashi ;
Ishii, Hitoha ;
Mori, Yosai ;
Miyata, Kazunori .
ANNALS OF TRANSLATIONAL MEDICINE, 2021, 9 (16)
[42]   Bleb Analysis by Using Anterior Segment Optical Coherence Tomography in Two Different Methods of Trabeculectomy [J].
Hamanaka, Teruhiko ;
Omata, Takayasu ;
Sekimoto, Shinichiro ;
Sugiyama, Takakazu ;
Fujikoshi, Yasunori .
INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2013, 54 (10) :6536-6541
[43]   Evaluation of implanted perforated lacrimal punctal plugs using anterior segment optical coherence tomography [J].
Raafat Mohyeldeen Abdelrahman Abdallah ;
Ahmed Mohamed Kamal Elshafei ;
Heba Radi AttaAllah .
Eye and Vision, 8
[44]   Evaluation of implanted perforated lacrimal punctal plugs using anterior segment optical coherence tomography [J].
Abdallah, Raafat Mohyeldeen Abdelrahman ;
Elshafei, Ahmed Mohamed Kamal ;
AttaAllah, Heba Radi .
EYE AND VISION, 2021, 8 (01)
[45]   Changes in crystalline lens parameters during accommodation evaluated using swept source anterior segment optical coherence tomography [J].
Wang, Lanhua ;
Jin, Guangming ;
Ruan, Xiaoting ;
Gu, Xiaoxun ;
Chen, Xiaoyun ;
Wang, Wei ;
Dai, Ye ;
Liu, Zhenzhen ;
Luo, Lixia .
ANNALS OF EYE SCIENCE, 2022, 7
[46]   Automatic intraocular lens segmentation and detection in optical coherence tomography imagese [J].
Gillner, Melanie ;
Eppig, Timo ;
Langenbucher, Achim .
ZEITSCHRIFT FUR MEDIZINISCHE PHYSIK, 2014, 24 (02) :104-111
[47]   Dissecting the Profile of Corneal Thickness With Keratoconus Progression Based on Anterior Segment Optical Coherence Tomography [J].
Dong, Yanling ;
Li, Dongfang ;
Guo, Zhen ;
Liu, Yang ;
Lin, Ping ;
Lv, Bin ;
Lv, Chuanfeng ;
Xie, Guotong ;
Xie, Lixin .
FRONTIERS IN NEUROSCIENCE, 2022, 15
[48]   The Use of Artificial Intelligence for Estimating Anterior Chamber Depth from Slit-Lamp Images Developed Using Anterior-Segment Optical Coherence Tomography [J].
Shimizu, Eisuke ;
Tanaka, Kenta ;
Nishimura, Hiroki ;
Agata, Naomichi ;
Tanji, Makoto ;
Nakayama, Shintato ;
Khemlani, Rohan Jeetendra ;
Yokoiwa, Ryota ;
Sato, Shinri ;
Shiba, Daisuke ;
Sato, Yasunori .
BIOENGINEERING-BASEL, 2024, 11 (10)
[49]   INTRA-RETINAL LAYER SEGMENTATION OF OPTICAL COHERENCE TOMOGRAPHY USING 3D FULLY CONVOLUTIONAL NETWORKS [J].
Kiaee, Farkhondeh ;
Fahimi, Hamed ;
Rabbani, Hossein .
2018 25TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2018, :2795-2799
[50]   Quantitative evaluation of anterior chamber parameters using anterior segment optical coherence tomography in primary angle closure mechanisms [J].
Shabana, Noor ;
Aquino, Maria C. D. ;
See, Jovina ;
Ce, Zheng ;
Tan, Anna M. ;
Nolan, Winifred P. ;
Hitchings, Roger ;
Young, Stephanie M. ;
Loon, Seng Chee ;
Sng, Chelvin C. ;
Wong, Wanling ;
Chew, Paul T. K. .
CLINICAL AND EXPERIMENTAL OPHTHALMOLOGY, 2012, 40 (08) :792-801