Fully-automatic segmentation of the ciliary muscle using anterior segment optical coherence tomography images

被引:2
作者
Goyanes, Elena [1 ,2 ]
de Moura, Joaquim [1 ,2 ]
Novo, Jorge [1 ,2 ]
Fernandez-Vigo, Jose Ignacio [3 ,5 ]
Fernandez-Vigo, Jose Angel [4 ,5 ]
Ortega, Marcos [1 ,2 ]
机构
[1] Univ A Coruna, Ctr Invest CITIC, La Coruna, Spain
[2] Univ A Coruna, Inst Invest Biomed Coruna INIBIC, VARPA Res Grp, La Coruna, Spain
[3] Hosp Clin San Carlos, Inst Invest Sanitaria IdISSC, Dept Ophthalmol, Madrid, Spain
[4] Univ Extremadura, Dept Ophthalmol, Badajoz, Spain
[5] Ctr Int Oftalmol Avanzada, Madrid, Spain
来源
2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN) | 2022年
关键词
CAD system; AS-OCT; Ciliary Muscle; Segmentation; Deep Learning; AQUEOUS-HUMOR DYNAMICS; ACCOMMODATION;
D O I
10.1109/IJCNN55064.2022.9892316
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The study of the ciliary muscle represents a fundamental step in the diagnosis and treatment of many high-incidence diseases, such as glaucoma or myopia. Currently, Anterior Segment Optical Coherence Tomography (AS-OCT) is widely used by clinicians to analyse the morphological changes that affect this important ocular structure. AS-OCT is a non-invasive imaging technique that produces high-resolution cross-sectional images, allowing a precise visualization of the main ocular tissues of the anterior segment of the eye. In this work, we propose a novel methodology for the ciliary muscle segmentation using AS-OCT images, an emerging ophthalmic imaging technology with great potential to support early diagnosis of relevant ocular conditions. For this purpose, we have analysed the performance of the U-Net architecture with two different encoders (ResNet-18 and ResNet-34) combined with a transfer learning-based approach. The validation of the proposed system was performed through different and representative experiments, using an AS-OCT dataset that was specifically designed for this work. The results demonstrated that the proposed system is robust and reliable, achieving an average Precision of 0.8902 +/- 0.0815, an average Recall of 0.8237 +/- 0.1239, an average Accuracy of 0.9961 +/- 0.0021, an average Jaccard of 0.7431 +/- 0.1116 and an average Dice of 0.8445 +/- 0.0870. These results demonstrate that the proposed method has a satisfactory performance that can help the clinicians to make a more accurate diagnosis and proceed with appropriate treatments of different diseases of interest.
引用
收藏
页数:8
相关论文
共 50 条
[31]   Segmentation of Retinal Low-Cost Optical Coherence Tomography Images using Deep Learning [J].
Kepp, Timo ;
Sudkamp, Helge ;
von der Burchard, Claus ;
Schenke, Hendrik ;
Koch, Peter ;
Huettmann, Gereon ;
Roider, Johann ;
Heinrich, Mattias P. ;
Handels, Heinz .
MEDICAL IMAGING 2020: COMPUTER-AIDED DIAGNOSIS, 2020, 11314
[32]   Biometric Analysis of Pigment Dispersion Syndrome Using Anterior Segment Optical Coherence Tomography [J].
Aptel, Florent ;
Beccat, Sylvain ;
Fortoul, Vincent ;
Denis, Philippe .
OPHTHALMOLOGY, 2011, 118 (08) :1563-1570
[33]   Development of a β-Variational Autoencoder for Disentangled Latent Space Representation of Anterior Segment Optical Coherence Tomography Images [J].
Shon, Kilhwan ;
Sung, Kyung Rim ;
Kwak, Jiehoon ;
Shin, Joong Won ;
Lee, Joo Yeon .
TRANSLATIONAL VISION SCIENCE & TECHNOLOGY, 2022, 11 (02)
[34]   Deep learning segmentation of fibrous cap in intravascular optical coherence tomography images [J].
Lee, Juhwan ;
Kim, Justin N. ;
Dallan, Luis A. P. ;
Zimin, Vladislav N. ;
Hoori, Ammar ;
Hassani, Neda S. ;
Makhlouf, Mohamed H. E. ;
Guagliumi, Giulio ;
Bezerra, Hiram G. ;
Wilson, David L. .
SCIENTIFIC REPORTS, 2024, 14 (01)
[35]   Automated Segmentation of Dental Calculus in Optical Coherence Tomography Images [J].
Lee, Chia-Yen ;
Chuang, Ching-Cheng ;
Chen, Guan-Jie ;
Huang, Chih-Chia ;
Lee, Shyh-Yuan ;
Lin, Yu-Hsien .
SENSORS AND MATERIALS, 2018, 30 (11) :2517-2529
[36]   Dynamic Analysis of Iris Configuration with Anterior Segment Optical Coherence Tomography [J].
Cheung, Carol Yim-lui ;
Liu, Shu ;
Weinreb, Robert N. ;
Liu, Jing ;
Li, Haitao ;
Leung, Dexter Yu-lung ;
Dorairaj, Syril ;
Liebmann, Jeffrey ;
Ritch, Robert ;
Lam, Dennis Shun Chiu ;
Leung, Christopher Kai-shun .
INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2010, 51 (08) :4040-4046
[37]   Role of anterior segment optical coherence tomography in scleral diseases: A review [J].
Peraka, Raghav Preetam ;
Murthy, Somasheila, I .
SEMINARS IN OPHTHALMOLOGY, 2023, 38 (03) :238-247
[38]   Automatic Annotation of Retinal Layers in Optical Coherence Tomography Images [J].
Dodo, Bashir Isa ;
Li, Yongmin ;
Eltayef, Khalid ;
Liu, Xiaohui .
JOURNAL OF MEDICAL SYSTEMS, 2019, 43 (12)
[39]   Automatic Identification of Macular Edema in Optical Coherence Tomography Images [J].
Samagaio, Gabriela ;
Estevez, Aida ;
de Moura, Joaquim ;
Novo, Jorge ;
Ortega, Marcos ;
Isabel Fernandez, Maria .
VISAPP: PROCEEDINGS OF THE 13TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS - VOL 4: VISAPP, 2018, :533-540
[40]   Prediction of keratoconus progression using deep learning of anterior segment optical coherence tomography maps [J].
Kamiya, Kazutaka ;
Ayatsuka, Yuji ;
Kato, Yudai ;
Shoji, Nobuyuki ;
Miyai, Takashi ;
Ishii, Hitoha ;
Mori, Yosai ;
Miyata, Kazunori .
ANNALS OF TRANSLATIONAL MEDICINE, 2021, 9 (16)