Fully-automatic segmentation of the ciliary muscle using anterior segment optical coherence tomography images

被引:2
作者
Goyanes, Elena [1 ,2 ]
de Moura, Joaquim [1 ,2 ]
Novo, Jorge [1 ,2 ]
Fernandez-Vigo, Jose Ignacio [3 ,5 ]
Fernandez-Vigo, Jose Angel [4 ,5 ]
Ortega, Marcos [1 ,2 ]
机构
[1] Univ A Coruna, Ctr Invest CITIC, La Coruna, Spain
[2] Univ A Coruna, Inst Invest Biomed Coruna INIBIC, VARPA Res Grp, La Coruna, Spain
[3] Hosp Clin San Carlos, Inst Invest Sanitaria IdISSC, Dept Ophthalmol, Madrid, Spain
[4] Univ Extremadura, Dept Ophthalmol, Badajoz, Spain
[5] Ctr Int Oftalmol Avanzada, Madrid, Spain
来源
2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN) | 2022年
关键词
CAD system; AS-OCT; Ciliary Muscle; Segmentation; Deep Learning; AQUEOUS-HUMOR DYNAMICS; ACCOMMODATION;
D O I
10.1109/IJCNN55064.2022.9892316
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The study of the ciliary muscle represents a fundamental step in the diagnosis and treatment of many high-incidence diseases, such as glaucoma or myopia. Currently, Anterior Segment Optical Coherence Tomography (AS-OCT) is widely used by clinicians to analyse the morphological changes that affect this important ocular structure. AS-OCT is a non-invasive imaging technique that produces high-resolution cross-sectional images, allowing a precise visualization of the main ocular tissues of the anterior segment of the eye. In this work, we propose a novel methodology for the ciliary muscle segmentation using AS-OCT images, an emerging ophthalmic imaging technology with great potential to support early diagnosis of relevant ocular conditions. For this purpose, we have analysed the performance of the U-Net architecture with two different encoders (ResNet-18 and ResNet-34) combined with a transfer learning-based approach. The validation of the proposed system was performed through different and representative experiments, using an AS-OCT dataset that was specifically designed for this work. The results demonstrated that the proposed system is robust and reliable, achieving an average Precision of 0.8902 +/- 0.0815, an average Recall of 0.8237 +/- 0.1239, an average Accuracy of 0.9961 +/- 0.0021, an average Jaccard of 0.7431 +/- 0.1116 and an average Dice of 0.8445 +/- 0.0870. These results demonstrate that the proposed method has a satisfactory performance that can help the clinicians to make a more accurate diagnosis and proceed with appropriate treatments of different diseases of interest.
引用
收藏
页数:8
相关论文
共 50 条
[21]   Automatic fluid segmentation in retinal optical coherence tomography images using attention based deep learning [J].
Liu, Xiaoming ;
Wang, Shaocheng ;
Zhang, Ying ;
Liu, Dong ;
Hu, Wei .
NEUROCOMPUTING, 2021, 452 :576-591
[22]   Clinical Applications of Anterior Segment Optical Coherence Tomography [J].
Lim, Su-Ho .
JOURNAL OF OPHTHALMOLOGY, 2015, 2015
[23]   When to use anterior segment optical coherence tomography [J].
Atalay, Eray ;
Yu, Daryle Jason ;
Nongpiur, Monisha Esther .
EXPERT REVIEW OF OPHTHALMOLOGY, 2020, 15 (04) :233-248
[24]   Segmentation of Intra-Retinal Cysts From Optical Coherence Tomography Images Using a Fully Convolutional Neural Network Model [J].
Girish, G. N. ;
Thakur, Bibhash ;
Chowdhury, Sohini Roy ;
Kothari, Abhishek R. ;
Rajan, Jeny .
IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2019, 23 (01) :296-304
[25]   Automatic segmentation of intravascular optical coherence tomography images for facilitating quantitative diagnosis of atherosclerosis [J].
Wang, Zhao ;
Kyono, Hiroyuki ;
Bezerra, Hiram G. ;
Wilson, David L. ;
Costa, Marco A. ;
Rollins, Andrew M. .
OPTICAL COHERENCE TOMOGRAPHY AND COHERENCE DOMAIN OPTICAL METHODS IN BIOMEDICINE XV, 2011, 7889
[26]   Morphology of functioning trabeculectomy blebs using anterior segment optical coherence tomography [J].
Khamar, Mayuri B. ;
Soni, Shruti R. ;
Mehta, Siddharth V. ;
Srivastava, Samaresh ;
Vasavada, Viraj A. .
INDIAN JOURNAL OF OPHTHALMOLOGY, 2014, 62 (06) :711-714
[27]   Automatic Segmentation of Cortex and Nucleus in Anterior Segment OCT Images [J].
Yin, Pengshuai ;
Tan, Mingkui ;
Min, Huaqing ;
Xu, Yanwu ;
Xu, Guanghui ;
Wu, Qingyao ;
Tong, Yunfei ;
Risa, Higashita ;
Liu, Jiang .
COMPUTATIONAL PATHOLOGY AND OPHTHALMIC MEDICAL IMAGE ANALYSIS, 2018, 11039 :269-276
[28]   Automatic microchannel detection using deep learning in intravascular optical coherence tomography images [J].
Lee, Juhwan ;
Kim, Justin N. ;
Pereira, Gabriel T. R. ;
Gharaibeh, Yazan ;
Kolluru, Chaitanya ;
Zimin, Vladislav N. ;
Dallan, Luis A. P. ;
Motairek, Issam K. ;
Hoori, Ammar ;
Guagliumi, Giulio ;
Bezerra, Hiram G. ;
Wilson, David L. .
MEDICAL IMAGING 2022: IMAGE-GUIDED PROCEDURES, ROBOTIC INTERVENTIONS, AND MODELING, 2022, 12034
[29]   Inpainting Saturation Artifact in Anterior Segment Optical Coherence Tomography [J].
Li, Jie ;
Zhang, He ;
Wang, Xiaoli ;
Wang, Haoming ;
Hao, Jingzi ;
Bai, Guanhua .
SENSORS, 2023, 23 (23)
[30]   Automatic Cysts Detection in Optical Coherence Tomography Images [J].
Wieclawek, Wojciech .
2015 22ND INTERNATIONAL CONFERENCE MIXED DESIGN OF INTEGRATED CIRCUITS & SYSTEMS (MIXDES), 2015, :79-82