Computable Banach spaces via domain theory

被引:14
作者
Edalat, A [1 ]
Sünderhauf, P [1 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Comp, London SW7 2BZ, England
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1016/S0304-3975(98)00288-6
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper extends the order-theoretic approach to computable analysis via continuous domains to complete metric spaces and Banach spaces. We employ the domain of formal balls to define a computability theory for complete metric spaces. For Banach spaces, the domain specialises to the domain of closed balls, ordered by reversed inclusion. We characterise computable linear operators as those which map computable sequences to computable sequences and are effectively bounded. We show that the domain-theoretic computability theory is equivalent to the well-established approach by Pour-El and Richards. (C) 1999 Published by Elsevier Science B.V. All rights reserved.
引用
收藏
页码:169 / 184
页数:16
相关论文
共 28 条
[1]  
Abramsky S., 1994, Handbook of Logic in Computer Science, V3, P1
[2]  
ALEFELD G, 1993, INTRO INTEVAL ARITHM
[3]   Domain representability of metric spaces [J].
Blanck, J .
ANNALS OF PURE AND APPLIED LOGIC, 1997, 83 (03) :225-247
[4]  
BLANCK J, 1997, THESIS UPSALLA U
[5]  
CEITIN GS, 1967, T AMS, V64, P1
[6]   A computational model for metric spaces [J].
Edalat, A ;
Heckmann, R .
THEORETICAL COMPUTER SCIENCE, 1998, 193 (1-2) :53-73
[7]   A domain-theoretic approach to computability on the real line [J].
Edalat, A ;
Sunderhauf, P .
THEORETICAL COMPUTER SCIENCE, 1999, 210 (01) :73-98
[8]   Domains for computation in mathematics, physics and exact real arithmetic [J].
Edalat, A .
BULLETIN OF SYMBOLIC LOGIC, 1997, 3 (04) :401-452
[9]  
EDALAT A, 1997, ELECT NOTES THEORETI, V6
[10]  
Ershov Yu.L., 1972, ALGEBR LOG+, V11, P203