Schur-Weyl quasi-duality and (co)triangular Hopf quasigroups

被引:4
作者
Shi, Guodong [1 ]
Wang, Shuanhong [1 ]
机构
[1] Southeast Univ, Dept Math, Nanjing 210096, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
DOUBLE CENTRALIZER PROPERTIES; QUANTUM GROUPS; ALGEBRAS; BIALGEBRAS; MODULES; THEOREM;
D O I
10.1063/5.0005803
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Schur-Weyl duality relates the representation theories of general linear and symmetric groups in defining characteristic and plays a central role in many parts of algebraic Lie theory. In this paper, we will introduce the notion of Schur-Weyl quasi-duality and study it. For this, generally, we consider a braided vector space (V,c) and its braided Lie algebra End(k)(V)((-)). Then, we can construct its braided enveloping algebra U(End(k)(V)((-))), which is a connected braided c-cocommutative Hopf algebra. Let H be a triangular Hopf quasigroup with bijective antipode and B be a cotriangular Hopf quasigroup with bijective antipode. Let V be any finite dimensional vector space in the category <mml:mmultiscripts>LQ(H,R)(B,sigma)</mml:mmultiscripts> of generalized Long quasimodules. We show that (U((EndkV)(-))star H star B,kSn,V circle times n) is a Schur-Weyl quasi-duality under suitable conditions.
引用
收藏
页数:23
相关论文
共 32 条
[1]   Quasigroups. I [J].
Albert, A. A. .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1943, 54 (1-3) :507-519
[2]   Projections and Yetter-Drinfel'd modules over Hopf (co)quasigroups [J].
Alonso Alvarez, J. N. ;
Fernandez Vilaboa, J. M. ;
Gonzalez Rodriguez, R. ;
Soneira Calvo, C. .
JOURNAL OF ALGEBRA, 2015, 443 :153-199
[3]  
[Anonymous], 2000, Contemp. Math.
[4]  
Brzezinski T, 2010, INT ELECTRON J ALGEB, V8, P114
[5]   ACTIONS OF HOPF QUASIGROUPS [J].
Brzezinski, Tomasz ;
Jiao, Zhengming .
COMMUNICATIONS IN ALGEBRA, 2012, 40 (02) :681-696
[6]  
Caenepeel S, 2002, LECT NOTES MATH, V1787, P3
[7]  
FANG X., 2011, J. Southeast Univ. (English Ed.), V27, P343
[8]  
Fulton W., 1991, REPRESENTATION THEOR
[9]   Braided Lie algebras and bicovdriant differential calculi over co-quasitriangular Hopf algebras [J].
Gomez, X ;
Majid, S .
JOURNAL OF ALGEBRA, 2003, 261 (02) :334-388
[10]   Hopf quasicomodules and Yetter-Drinfel'd quasicomodules [J].
Gu, Yue ;
Wang, Shuanhong .
COMMUNICATIONS IN ALGEBRA, 2020, 48 (01) :351-379